Geographic differences in exposures to metals and essential elements in pregnant women living in Suriname

Perng W, Tamayo-Ortiz M, Tang L, Sanchez BN, Cantoral A, Meeker JD, et al. Early life exposure in Mexico to ENvironmental Toxicants (ELEMENT) Project. BMJ Open. 2019;9:e030427–2019.

Article  Google Scholar 

Rothenberg SE, Yu X, Liu J, Biasini FJ, Hong C, Jiang X, et al. Maternal methylmercury exposure through rice ingestion and offspring neurodevelopment: A prospective cohort study. Int J Hyg Environ Health. 2016;219:832–42.

Article  CAS  Google Scholar 

Shah-Kulkarni S, Lee S, Jeong KS, Hong YC, Park H, Ha M, et al. Prenatal exposure to mixtures of heavy metals and neurodevelopment in infants at 6 months. Environ Res. 2020;182:109122.

Article  CAS  Google Scholar 

Ma R, Yang K, Chen C, Mao X, Shen X, Jiang L, et al. Early-life exposure to aluminum and fine motor performance in infants: a longitudinal study. J Expo Sci Environ Epidemiol. 2021;31:248–56.

Article  CAS  Google Scholar 

Ma C, Iwai-Shimada M, Nakayama SF, Isobe T, Kobayashi Y, Tatsuta N, et al. Association of prenatal exposure to cadmium with neurodevelopment in children at 2 years of age: The Japan Environment and Children’s Study. Environ Int. 2021;156:106762.

Article  CAS  Google Scholar 

Wang Y, Chen L, Gao Y, Zhang Y, Wang C, Zhou Y, et al. Effects of prenatal exposure to cadmium on neurodevelopment of infants in Shandong, China. Environ Pollut. 2016;211:67–73.

Article  CAS  Google Scholar 

Liu W, Xin Y, Li Q, Shang Y, Ping Z, Min J, et al. Biomarkers of environmental manganese exposure and associations with childhood neurodevelopment: a systematic review and meta-analysis. Environ Health. 2020;19:104–20.

Article  Google Scholar 

Mora AM, Córdoba L, Cano JC, Hernandez-Bonilla D, Pardo L, Schnaas L, et al. Prenatal Mancozeb exposure, Excess Manganese, and Neurodevelopment at 1 Year of age in the Infants’ Environmental Health (ISA) Study. Environ Health Perspect. 2018;126:057007.

Article  Google Scholar 

Rantakokko P, Main KM, Wohlfart-Veje C, Kiviranta H, Airaksinen R, Vartiainen T, et al. Association of placenta organotin concentrations with congenital cryptorchidism and reproductive hormone levels in 280 newborn boys from Denmark and Finland. Hum Reprod. 2013;28:1647–60.

Article  CAS  Google Scholar 

Rantakokko P, Main KM, Wohlfart-Veje C, Kiviranta H, Airaksinen R, Vartiainen T, et al. Association of placenta organotin concentrations with growth and ponderal index in 110 newborn boys from Finland during the first 18 months of life: a cohort study. Environ Health. 2014;13:45–069X.

Article  Google Scholar 

Lima LW, Stonehouse GC, Walters C, Mehdawi AFE, Fakra SC, Pilon-Smits EAH Selenium Accumulation, Speciation and Localization in Brazil Nuts (Bertholletia excelsa H.B.K.). Plants (Basel) 2019 August;8:https://doi.org/10.3390/plants8080289.

NIH Office of Dietary Supplements. Selenium. 2019; Available at: https://ods.od.nih.gov/factsheets/Selenium-HealthProfessional/.

Battin EE, Zimmerman MT, Ramoutar RR, Quarles CE, Brumaghim JL. Preventing metal-mediated oxidative DNA damage with selenium compounds. Metallomics. 2011 ;3:503–12.

Article  CAS  Google Scholar 

Ralston NVC, Ralston CR, Raymond LJ. Selenium health benefit values: updated criteria for mercury risk assessments. Biol Trace Elem Res. 2016 ;171:262–9.

Article  CAS  Google Scholar 

Ralston NV, Raymond LJ. Dietary selenium’s protective effects against methylmercury toxicity. Toxicology. 2010;278:112–23.

Article  CAS  Google Scholar 

Ralston NVC, Kaneko JJ, Raymond LJ. Selenium health benefit values provide a reliable index of seafood benefits vs. risks. J Trace Elem Med Biol. 2019;55:50–57.

Article  CAS  Google Scholar 

Spiller HA. Rethinking mercury: the role of selenium in the pathophysiology of mercury toxicity. Clin Toxicol (Philos). 2018;56:313–26.

Article  CAS  Google Scholar 

Hindori-Mohangoo A, Hindori M Innovatieve zorg rond zwangerschap en geboorte in Suriname. 1st ed. Paramaribo, Suriname: Stichting Perisur; 2017.

Bureau of Public Health in Suriname. Doodsorzaken in Suriname. 2014.

Algemeen Bureau voor de Statistiek in Suriname. Demographic Data. 2021.

Ouboter P. Review of mercury pollution in Suriname. Acad J Suriname. 2015;6:531–43.

Google Scholar 

Abdoel Wahid F, Wickliffe J, Wilson M, Van Sauers A, Bond N, Hawkins W, et al. Presence of pesticide residues on produce cultivated in Suriname. Environ Monit Assess. 2017;189:303–17.

Article  CAS  Google Scholar 

Lichtveld Mea A. One Health approach to interdict environmental health threats in Suriname. Ann Glob Health. 2016;82:444–5.

Article  Google Scholar 

Zijlmans W, Wickliffe J, Hindori-Mohangoo A, MacDonald-Ottevanger S, Ouboter P, Landburg G, et al. Caribbean Consortium for Research in Environmental and Occupational Health (CCREOH) Cohort Study: influences of complex environmental exposures on maternal and child health in Suriname. BMJ Open. 2020;10:e034702–2019.

Article  Google Scholar 

Gokoel AR, Zijlmans WCWR, Covert HH, Abdoel Wahid F, Shankar A, MacDonald-Ottevanger MS, et al. Influence of Prenatal Exposure to Mercury, Perceived Stress, and Depression on Birth Outcomes in Suriname: Results from the MeKiTamara Study. Int J Environ Res Public Health. 2020;17:4444 https://doi.org/10.3390/ijerph17124444

Article  Google Scholar 

Rimbaud D, Restrepo M, Louison A, Boukhari R, Ardillon V, Carles G, et al. Blood lead levels and risk factors for lead exposure among pregnant women in western French Guiana: the role of manioc consumption. J Toxicol Environ Health A. 2017;80:382–93.

Article  CAS  Google Scholar 

Alain B, Dominique Y, Cordier S, Frery N. Goldmining and mercury pollution in French Guiana: Environmental impact and health effects. Environ Risques et Sante. 2006;5:167–79.

Google Scholar 

Fujimura M, Matsuyama A, Harvard JP, Bourdineaud JP, Nakamura K. Mercury contamination in humans in Upper Maroni, French Guiana between 2004 and 2009. Bull Environ Contam Toxicol. 2012;88:135–9.

Article  CAS  Google Scholar 

Carneiro MF, Evangelista FS, Barbosa F. Manioc flour consumption as a risk factor for lead poisoning in the Brazilian Amazon. J Toxicol Environ Health A. 2013;76:206–16.

Article  CAS  Google Scholar 

Barbosa F, Fillion M, Lemire M, Passos CJ, Rodrigues JL, Philibert A, et al. Elevated blood lead levels in a riverside population in the Brazilian Amazon. Environ Res. 2009;109:594–9.

Article  CAS  Google Scholar 

de Andrade Lima LR, Menezes-Filho J, Mertens F, Passos C. Investigation of lead sources in manioc flour from riparian communities in the Tapajós Region, Brazilian Amazon. Environ Earth Sci. 2021;80:158.

Reeuwijk NM, Klerx WN, Kooijman M, Hoogenboom LA, Rietjens IM, Martena MJ. Levels of lead, arsenic, mercury and cadmium in clays for oral use on the Dutch market and estimation of associated risks. Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 2013;30:1535–45.

Article  CAS  Google Scholar 

Lambert V, Boukhari R, Nacher M, Goullé JP, Roudier E, Elguindi W, et al. Plasma and urinary aluminum concentrations in severely anemic geophagous pregnant women in the Bas Maroni region of French Guiana: a case-control study. Am J Trop Med Hyg. 2010;83:1100–5.

Article  CAS  Google Scholar 

Wickliffe JK, Lichtveld MY, Zijlmans CW, MacDonald-Ottevanger S, Shafer M, Dahman C, et al. Exposure to total and methylmercury among pregnant women in Suriname: sources and public health implications. J Expo Sci Environ Epidemiol. 2021;31:117–25.

Article  CAS  Google Scholar 

Polak-Juszczak L. Selenium and mercury molar ratios in commercial fish from the Baltic Sea: Additional risk assessment criterion for mercury exposure. Food Control. 2015;50:881–8.

Article  CAS  Google Scholar 

Malm O. Gold mining as a source of mercury exposure in the Brazilian Amazon. Environ Res. 1998;77:73–8.

Article  CAS  Google Scholar 

Feingold BJ, Berky A, Hsu-Kim H, Rojas Jurado E, Pan WK Population-based dietary exposure to mercury through fish consumption in the Southern Peruvian Amazon. Environ Res.183:108720.

Soares L, Abdoel Wahid F, Zijlmans W, Lichtveld M, Ouboter P, Hindori-Mohangoo A, et al. Environmental analysis of mercury and neuroprotective nutrients measured in freshwater and marine fish from Suriname, South America [Unpublished manuscript].

Berky AJ, Robie E, Chipa SN, Ortiz EJ, Palmer EJ, Rivera NA, et al. Risk of lead exposure from wild game consumption from cross-sectional studies in Madre de Dios, Peru. Lancet Reg Health-Am;12:100266.

Ericson B, Hu H, Nash E, Ferraro G, Sinitsky J, Taylor MP Blood lead levels in low-income and middle-income countries: a systematic review. Lancet Planet Health;5:e145–53.

Kordas K, Ravenscroft J, Cao Y, McLean EV. Lead exposure in low and middle-income countries: perspectives and lessons on patterns, injustices, economics, and politics. Int J Environ Res Public Health. 2018;15:2351 https://doi.org/10.3390/ijerph15112351

Article  Google Scholar 

Hong YS, Kim YM, Lee KE. Methylmercury exposure and health effects. J Prev Med Public Health. 2012;45:353–63.

Article  Google Scholar 

May TW, Fairchild JF, Petty JD, Walther MJ, Lucero J, Delvaux M, et al. An evaluation of selenium concentrations in water, sediment, invertebrates, and fish from the Solomon River Basin. Environ Monit Assess. 2008;137:213–32.

Article  CAS  Google Scholar 

Seeda M, Yassen AA, Khater A, Zaghloul S. Selenium behavior in the soil, water, plants and its Implication for Human health. A review. Curr Sci Int 2020;9:173–97.

Unsworth J, Wauchope RD, Klein A, Dorn E, Zeeh B, Yeh S, et al. Significance of the long range transport of pesticides in the atmosphere. Pest Manag Sci. 2000;58:314.

Rader JI. Anti-nutritive effects of dietary tin. Adv Exp Med Biol. 1991;289:509–24.

Article  CAS  Google Scholar 

Shimbo S, Watanabe T, Nakatsuka H, Yaginuma-Sakurai K, Ikeda M. Dietary tin intake and association with canned food consumption in Japanese preschool children. Environ Health Prev Med. 2013;18:230–6.

Article  CAS  Google Scholar 

Álvarez-Solorza I, Upegui-Arango LD, Borja-Aburto V, González-González N, Fischer F, Bustamante-Montes LP. Perception and Knowledge of Mercury by Occupationally Exposed Health Care Personnel. J Contin Educ Health Prof. 2022;42:e19–26.

Article  Google Scholar 

Gonzalez DJX, Arain A, Fernandez LE. Mercury exposure, risk factors, and perceptions among women of childbearing age in an artisanal gold mining region of the Peruvian Amazon. Environ Res. 2019;179:108786.

Article  CAS  Google Scholar 

ATSDR. 2012. Toxicological profile for manganese. Atlanta, GA: Agency for ToxicSubstances and Disease Registry, U.S. Department of Health and Human Services, Public Health Service. https://www.atsdr.cdc.gov/toxprofiles/tp151.pdf. August 1, 2022.

留言 (0)

沒有登入
gif