LL-37-dsRNA Complexes Modulate Immune Response via RIG-I in Oral Keratinocytes

Barbalat, R., S.E. Ewald, M.L. Mouchess, et al. 2011. Nucleic acid recognition by the innate immune system. Annual Review of Immunology 29: 185–214. https://doi.org/10.1146/annurev-immunol-031210-101340.

Article  CAS  Google Scholar 

Marshak-Rothstein, A. 2006. Toll-like receptors in systemic autoimmune disease. Nature Reviews Immunology 6: 823–835. https://doi.org/10.1038/nri1957.

Article  CAS  Google Scholar 

Zitvogel, L., O. Kepp, and G. Kroemer. 2010. Decoding cell death signals in inflammation and immunity. Cell 140: 798–804. https://doi.org/10.1016/j.cell.2010.02.015.

Article  CAS  Google Scholar 

Brentano, F., O. Schorr, R.E. Gay, et al. 2005. RNA released from necrotic synovial fluid cells activates rheumatoid arthritis synovial fibroblasts via Toll-like receptor 3. Arthritis and Rheumatism 52: 2656–2665. https://doi.org/10.1002/art.21273.

Article  CAS  Google Scholar 

Kahlenberg, J.M., and M.J. Kaplan. 2013. Little peptide, big effects: the role of LL-37 in inflammation and autoimmune disease. Journal of immunology 191: 4895–4901. https://doi.org/10.4049/jimmunol.1302005

Dürr, U.H., U.S. Sudheendra, and A. Ramamoorthy. 2006. LL-37, the only human member of the cathelicidin family of antimicrobial peptides. Biochimica et Biophysica Acta 1758: 1408–1425. https://doi.org/10.1016/j.bbamem.2006.03.030.

Article  CAS  Google Scholar 

Türkoğlu, O., G. Kandiloğlu, A. Berdeli, et al. 2011. Antimicrobial peptide hCAP-18/LL-37 protein and mRNA expressions in different periodontal diseases. Oral Diseases 17: 60–67. https://doi.org/10.1111/j.1601-0825.2010.01704.x.

Article  Google Scholar 

Takeuchi, Y., T. Nagasawa, S. Katagiri, et al. 2012. Salivary levels of antibacterial peptide (LL-37/hCAP-18) and cotinine in patients with chronic periodontitis. Journal of Periodontology 83: 766–772. https://doi.org/10.1902/jop.2011.100767.

Article  CAS  Google Scholar 

Türkoğlu, O., G. Emingil, N. Kütükçüler, et al. 2013. Gingival crevicular fluid levels of cathelicidin LL-37 and interleukin-18 in patients with chronic periodontitis. Journal of Clinical Periodontology 40: 933–941. https://doi.org/10.1902/jop.2009.080532.

Article  CAS  Google Scholar 

Xhindoli, D., S. Pacor, M. Benincasa, et al. 2016. The human cathelicidin LL-37–a pore-forming antibacterial peptide and host-cell modulator. Biochimica et Biophysica Acta 1858: 546–566. https://doi.org/10.1016/j.bbamem.2015.11.003.

Article  CAS  Google Scholar 

Greer, A., C. Zenobia, and R.P. Darveau. 2005. Defensins and LL-37: A review of function in the gingival epithelium. Journal of Periodontal Research 40: 474–481. https://doi.org/10.1111/prd.12028.

Article  Google Scholar 

Alalwani, S.M., J. Sierigk, C. Herr, et al. 2010. The antimicrobial peptide LL-37 modulates the inflammatory and host defense response of human neutrophils. European Journal of Immunology 40: 1118–1126. https://doi.org/10.1002/eji.200939275.

Article  CAS  Google Scholar 

Hu, Z., T. Murakami, K. Suzuki, et al. 2014. Antimicrobial cathelicidin peptide LL-37 inhibits the LPS/ATP-induced pyroptosis of macrophages by dual mechanism. PLoS One 9: e85765. https://doi.org/10.1371/journal.pone.0085765.

Hemshekhar, M., K.G. Choi, and N. Mookherjee. 2018. Host defense peptide LL-37-mediated chemoattractant properties, but not anti-inflammatory cytokine IL-1RA production, is selectively controlled by Cdc42 Rho GTPase via G protein-coupled receptors and JNK mitogen-activated protein kinase. Frontiers in Immunology 9: 1871. https://doi.org/10.3389/fimmu.2018.01871.

Article  CAS  Google Scholar 

Ganguly, D., G. Chamilos, R. Lande, et al. 2009. Self-RNA-antimicrobial peptide complexes activate human dendritic cells through TLR7 and TLR8. Journal of Experimental Medicine 206: 1983–1994. https://doi.org/10.1084/jem.20090480.

Article  CAS  Google Scholar 

Lai, Y., S. Adhikarakunnathu, K. Bhardwaj, et al. 2011. LL37 and cationic peptides enhance TLR3 signaling by viral double-stranded RNAs. PLoS One 6: e26632. https://doi.org/10.1371/journal.pone.0026632.

Fujimoto, R., N. Kamata, K. Yokoyama, et al. 2002. Establishment of immortalized human oral keratinocytes by gene transfer of a telomerase component. J Jpn Oral Muco Membr 8: 1–8. https://doi.org/10.1111/j.1600-0765.2007.01019.x.

Article  Google Scholar 

Lim, D.M., and M.L. Wang. 2011. Toll-like receptor 3 signaling enables human esophageal epithelial cells to sense endogenous danger signals released by necrotic cells. American Journal of Physiology. Gastrointestinal and Liver Physiology 301: 91–99. https://doi.org/10.1152/ajpgi.00471.2010.

Article  CAS  Google Scholar 

Ohta, K., A. Fukui, H. Shigeishi, et al. 2014. Expression and function of RIG-I in oral keratinocytes and fibroblasts. Cellular Physiology and Biochemistry 34: 1556–1565. https://doi.org/10.1159/000366359.

Article  CAS  Google Scholar 

Shibata, T., U. Ohto, S. Nomura, et al. 2016. Guanosine and its modified derivatives are endogenous ligands for TLR7. International Immunology 28: 211–222. https://doi.org/10.1093/intimm/dxv062.

Article  CAS  Google Scholar 

Chuang, T.H., J. Lee, L. Kline, et al. 2002. Toll-like receptor 9 mediates CpG-DNA signaling. Journal of Leukocyte Biology 71: 538–544. https://doi.org/10.2174/1566524023362159.

Article  CAS  Google Scholar 

Alexopoulou, L., A.C. Holt, R. Medzhitov, et al. 2001. Recognition of double-stranded RNA and activation of NF-kappaB by toll-like receptor 3. Nature 413: 732–738. https://doi.org/10.1038/35099560.

Article  CAS  Google Scholar 

Ganz, T. 2003. Defensins: Antimicrobial peptides of innate immunity. Nature Reviews Immunology 3: 710–720. https://doi.org/10.1038/nri1180.

Article  CAS  Google Scholar 

Ohta, K., M. Kajiya, T. Zhu, et al. 2011. Additive effects of orexin B and vasoactive intestinal polypeptide on LL-37-mediated antimicrobial activities. Journal of Neuroimmunology 233: 37–45. https://doi.org/10.1016/j.jneuroim.2010.11.009.

Article  CAS  Google Scholar 

Fukui, A., K. Ohta, H. Nishi, et al. 2013. Interleukin-8 and CXCL10 expression in oral keratinocytes and fibroblasts via toll-like receptors. Microbiology and Immunology 57: 198–206. https://doi.org/10.1111/1348-0421.12022.

Article  CAS  Google Scholar 

Santoro, M.G., A. Rossi, and C. Amici. 2003. NF-kappaB and virus infection: Who controls whom. EMBO Journal 22: 2552–2560. https://doi.org/10.1093/emboj/cdg267.

Article  CAS  Google Scholar 

Naruse, T., K. Ohta, H. Kato, et al. 2022. Immune response to cytosolic DNA via intercellular receptor modulation in oral keratinocytes and fibroblasts. Oral Diseases 28: 150–163. https://doi.org/10.1111/odi.13725.

Article  Google Scholar 

Herster, F., Z. Bittner, N.K. Archer, et al. 2020. Neutrophil extracellular trap-associated RNA and LL37 enable self-amplifying inflammation in psoriasis. Nature Communications 11: 105. https://doi.org/10.1038/s41467-019-13756-4.

Article  CAS  Google Scholar 

Hasan, M., C. Ruksznis, Y. Wang, et al. 2011. Antimicrobial peptides inhibit polyinosinic-polycytidylic acid-induced immune responses. The Journal of Immunology 187: 5653–5659. https://doi.org/10.4049/jimmunol.1102144.

Article  CAS  Google Scholar 

Tang, X., D. Basavarajappa, J.Z. Haeggström, et al. 2015. P2X7 receptor regulates internalization of antimicrobial peptide LL-37 by human macrophages that promotes intracellular pathogen clearance. The Journal of Immunology 195: 1191–1201. https://doi.org/10.4049/jimmunol.1402845.

Article  CAS  Google Scholar 

Anders, E., S. Dahl, D. Svensson, et al. 2018. LL-37-induced human osteoblast cytotoxicity and permeability occurs independently of cellular LL-37 uptake through clathrin-mediated endocytosis. Biochemical and Biophysical Research Communications 501: 280–285. https://doi.org/10.1016/j.bbrc.2018.04.235.

Article  CAS  Google Scholar 

Zhang, Z., K. Le, D. La Placa, et al. 2019. CXCR2 specific endocytosis of immunomodulatory peptide LL-37 in human monocytes and formation of LL-37 positive large vesicles in differentiated monoosteophils. Bone Reports 12: 100237. https://doi.org/10.1016/j.bonr.2019.100237.

Sandgren, S., A. Wittrup, F. Cheng, et al. 2004. The human antimicrobial peptide LL-37 transfers extracellular DNA plasmid to the nuclear compartment of mammalian cells via lipid rafts and proteoglycan-dependent endocytosis. Journal of Biological Chemistry 279: 17951–17956. https://doi.org/10.1074/jbc.m311440200.

Article  CAS  Google Scholar 

Matsumoto, M., K. Funami, M. Tatematsu, et al. 2014. Assessment of the Toll-like receptor 3 pathway in endosomal signaling. Methods in Enzymology 535: 149–165. https://doi.org/10.1016/b978-0-12-397925-4.00010-9.

Article  CAS  Google Scholar 

Ablasser, A., F. Bauernfeind, G. Hartmann, et al. 2009. RIG-I-dependent sensing of Poly(dA:DT) through the induction of an RNA polymerase III-transcribed RNA intermediate. Nature Immunology 10: 1065–1072. https://doi.org/10.1038/ni.1779.

Article  CAS  Google Scholar 

Mori, K., M. Yanagita, S. Hasegawa, et al. 2015. Necrosis-induced TLR3 activation promotes TLR2 expression in gingival cells. Journal of Dental Research 94: 1149–1157. https://doi.org/10.1177/0022034515589289.

Article  CAS  Google Scholar 

Chamilos, G., J. Gregorio, S. Meller, et al. 2012. Cytosolic sensing of extracellular self-DNA transported into monocytes by the antimicrobial peptide LL37. Blood 120: 3699–3707. https://doi.org/10.1182/blood-2012-01-401364.

Article  CAS  Google Scholar 

Wang, G. 2008. Structures of human host defense cathelicidin LL-37 and its smallest antimicrobial peptide KR-12 in lipid micelles. Journal of Biological Chemistry 283: 32637–32643. https://doi.org/10.1074/jbc.M805533200.

Article  CAS  Google Scholar 

Lee, E.Y., C. Zhang, J. Di Domizio, et al. 2019. Helical antimicrobial peptides assemble into protofibril scaffolds that present ordered dsDNA to TLR9. Nature communication 10: 1012. https://doi.org/10.1038/s41467-019-08868-w

Chiliveru, S., S.H. Rahbek, S.K. Jensen, et al. 2014. Inflammatory cytokines break down intrinsic immunological tolerance of human primary keratinocytes to cytosolic DNA. The Journal of Immunology 192: 2395–2404. https://doi.org/10.4049/jimmunol.1302120.

Article  CAS  Google Scholar 

Singh, D., R. Qi, J.L. Jordan, et al. 2013. The human antimicrobial peptide LL-37, but not the mouse ortholog, mCRAMP, can stimulate signaling by Poly(I:C) through a FPRL1-dependent pathway. Journal of Biological Chemistry 288: 8258–8268. https://doi.org/10.1074/jbc.m112.440883.

Article  CAS  Google Scholar 

Doss, M., M.R. White, T. Tecle, et al. 2010. Human defensins and LL-37 in mucosal immunity. Journal of Leukocyte Biology 87: 79–92. https://doi.org/10.1189/jlb.0609382.

Article  CAS  Google Scholar 

Nilsson, M.F., B. Sandstedt, O. Sørensen, et al. 1999. The human cationic antimicrobial protein (hCAP18), a peptide antibiotic, is widely expressed in human squamous epithelia and colocalizes with interleukin-6. Infection and Immunity 67: 2561–2566. https://doi.org/10.1128/iai.67.5.2561-2566.1999.

Article  Google Scholar 

Davidopoulou, S., H. Theodoridis, K. Nazer, et al. 2014. Salivary concentration of the antimicrobial peptide LL-37 in patients with oral lichen planus. Journal of Oral Microbiology 6: 26156. https://doi.org/10.3402/jom.v6.26156.

Article  Google Scholar 

Garlet, G.P., W.J. Martins, B.R. Ferreira, et al. 2003. Patterns of chemokines and chemokine receptors expression in different forms of human periodontal disease. Journal of Periodontal Research 38: 210–217. https://doi.org/10.1034/j.1600-0765.2003.02012.x.

Article 

留言 (0)

沒有登入
gif