Reversible stabilization of DNA/PEI complexes by reducible click-linkage between DNA and polymer. A new polyplex concept for lowering polymer quantity

Lundstrom K. Gene therapy today and tomorrow. Diseases. 2019;7:37–47.

CAS  Google Scholar 

Uddin F, Rudin CM, Sen T. CRISPR gene therapy: applications, limitations, and implications for the future. Front Oncol. 2020;10:1387.

Google Scholar 

Watanabe N, McKenna MK, Rosewell Shaw A, Suzuki M. Clinical CAR-T cell and oncolytic virotherapy for cancer treatment. Mol Ther. 2021;29:505–20.

CAS  Google Scholar 

Duan D. Systemic AAv micro-dystrophin gene therapy for Duchenne muscular dystrophy. Mol Ther. 2018;26:2337–56.

CAS  Google Scholar 

Manno CS, Pierce GF, Arruda VR, Glader B, Ragni M, Rasko JJ, et al. Successful transduction of liver in hemophilia by AAV-Factor IX and limitations imposed by the host immune response. Nat Med. 2006;12:342–7.

CAS  Google Scholar 

Nathwani AC, Rosales C, McIntosh J, Rastegarlari G, Nathwani D, Raj D, et al. Long-term safety and efficacy following systemic administration of a self-complementary AAV vector encoding human FIX pseudotyped with serotype 5 and 8 capsid proteins. Mol Ther. 2011;19:876–85.

CAS  Google Scholar 

Nathwani AC, Tuddenham EG, Rangarajan S, Rosales C, McIntosh J, Linch DC, et al. Adenovirus-associated virus vector-mediated gene transfer in hemophilia B. N Engl J Med. 2011;365:2357–65.

CAS  Google Scholar 

Nienhuis AW, Nathwani AC, Davidoff AM. Gene therapy for hemophilia. Mol Ther. 2017;25:1163–7.

CAS  Google Scholar 

Patil S, Gao YG, Lin X, Li Y, Dang K, Tian Y, et al. The development of functional non-viral vectors for gene delivery. Int J Mol Sci. 2019;20:5491–504.

CAS  Google Scholar 

Chen CK, Huang PK, Law WC, Chu CH, Chen NT, Lo LW. Biodegradable polymers for gene-delivery applications. Int J Nanomed. 2020;15:2131–50.

CAS  Google Scholar 

Wahane A, Waghmode A, Kapphahn A, Dhuri K, Gupta A, Bahal R. Role of lipid-based and polymer-based non-viral vectors in nucleic acid delivery for next-generation gene therapy. Molecules. 2020;25:2866–89.

CAS  Google Scholar 

Mashel TV, Tarakanchikova YV, Muslimov AR, Zyuzin MV, Timin AS, Lepik KV, et al. Overcoming the delivery problem for therapeutic genome editing: current status and perspective of non-viral methods. Biomaterials. 2020;258:120282.

CAS  Google Scholar 

Urello M, Hsu WH, Christie RJ. Peptides as a material platform for gene delivery: emerging concepts and converging technologies. Acta Biomater. 2020;117:40–59.

CAS  Google Scholar 

Urello MA, Xiang L, Colombo R, Ma A, Joseph A, Boyd J, et al. Metabolite-based modification of poly(l-lysine) for improved gene delivery. Biomacromolecules. 2020;21:3596–607.

CAS  Google Scholar 

Golan R, Pietrasanta LI, Hsieh W, Hansma HG. DNA toroids: stages in condensation. Biochemistry. 1999;38:14069–76.

CAS  Google Scholar 

Mann A, Richa R, Ganguli M. DNA condensation by poly-L-lysine at the single molecule level: role of DNA concentration and polymer length. J Control Release. 2008;125:252–62.

CAS  Google Scholar 

Sun C, Tang T, Uludag H. Molecular dynamics simulations of PEI mediated DNA aggregation. Biomacromolecules. 2011;12:3698–707.

CAS  Google Scholar 

Sun C, Tang T, Uludag H, Cuervo JE. Molecular dynamics simulations of DNA/PEI complexes: effect of PEI branching and protonation state. Biophys J. 2011;100:2754–63.

CAS  Google Scholar 

Widom J, Baldwin RL. Cation-induced toroidal condensation of DNA studies with Co3+(NH3)6. J Mol Biol. 1980;144:431–53.

CAS  Google Scholar 

Lucas P, Milroy DA, Thomas BJ, Moss SH, Pouton CW. Pharmaceutical and biological properties of poly(amino acid)/DNA polyplexes. J Drug Target. 1999;7:143–56.

CAS  Google Scholar 

Ramsay E, Hadgraft J, Birchall J, Gumbleton M. Examination of the biophysical interaction between plasmid DNA and the polycations, polylysine and polyornithine, as a basis for their differential gene transfection in-vitro. Int J Pharm. 2000;210:97–107.

CAS  Google Scholar 

Xu Y, Szoka FC Jr. Mechanism of DNA release from cationic liposome/DNA complexes used in cell transfection. Biochemistry. 1996;35:5616–23.

CAS  Google Scholar 

Pigeon L, Goncalves C, Pichon C, Midoux P. Evidence for plasmid DNA exchange after polyplex mixing. Soft Matter. 2016;12:7012–9.

CAS  Google Scholar 

Bacalocostantis I, Mane VP, Goodley AS, Bentley WE, Muro S, Kofinas P. Investigating polymer thiolation in gene delivery. J Biomater Sci Polym Ed. 2013;24:912–26.

CAS  Google Scholar 

Bacalocostantis I, Mane VP, Kang MS, Goodley AS, Muro S, Kofinas P. Effect of thiol pendant conjugates on plasmid DNA binding, release, and stability of polymeric delivery vectors. Biomacromolecules. 2012;13:1331–9.

CAS  Google Scholar 

McKenzie DL, Kwok KY, Rice KG. A potent new class of reductively activated peptide gene delivery agents. J Biol Chem. 2000;275:9970–7.

CAS  Google Scholar 

McKenzie DL, Smiley E, Kwok KY, Rice KG. Low molecular weight disulfide cross-linking peptides as nonviral gene delivery carriers. Bioconjug Chem. 2000;11:901–9.

CAS  Google Scholar 

Russ V, Frohlich T, Li Y, Halama A, Ogris M, Wagner E. Improved in vivo gene transfer into tumor tissue by stabilization of pseudodendritic oligoethylenimine-based polyplexes. J Gene Med. 2010;12:180–93.

CAS  Google Scholar 

Trubetskoy VS, Budker VG, Hanson LJ, Slattum PM, Wolff JA, Hagstrom JE. Self-assembly of DNA-polymer complexes using template polymerization. Nucleic Acids Res. 1998;26:4178–85.

CAS  Google Scholar 

Chollet P, Favrot MC, Hurbin A, Coll JL. Side-effects of a systemic injection of linear polyethylenimine-DNA complexes. J Gene Med. 2002;4:84–91.

Google Scholar 

Clamme JP, Azoulay J, Mely Y. Monitoring of the formation and dissociation of polyethylenimine/DNA complexes by two-photon fluorescence correlation spectroscopy. Biophys J. 2003;84:1960–8.

CAS  Google Scholar 

Godbey WT, Wu KK, Mikos AG. Poly(ethylenimine)-mediated gene delivery affects endothelial cell function and viability. Biomaterials. 2001;22:471–80.

CAS  Google Scholar 

Morimoto K, Nishikawa M, Kawakami S, Nakano T, Hattori Y, Fumoto S, et al. Molecular weight-dependent gene transfection activity of unmodified and galactosylated polyethyleneimine on hepatoma cells and mouse liver. Mol Ther. 2003;7:254–61.

CAS  Google Scholar 

Regnstrom K, Ragnarsson EG, Koping-Hoggard M, Torstensson E, Nyblom H, Artursson P. PEI - a potent, but not harmless, mucosal immuno-stimulator of mixed T-helper cell response and FasL-mediated cell death in mice. Gene Ther. 2003;10:1575–83.

CAS  Google Scholar 

Boeckle S, von Gersdorff K, van der Piepen S, Culmsee C, Wagner E, Ogris M. Purification of polyethylenimine polyplexes highlights the role of free polycations in gene transfer. J Gene Med. 2004;6:1102–11.

CAS  Google Scholar 

Fahrmeir J, Gunther M, Tietze N, Wagner E, Ogris M. Electrophoretic purification of tumor-targeted polyethylenimine-based polyplexes reduces toxic side effects in vivo. J Control Release. 2007;122:236–45.

CAS  Google Scholar 

Ciolina C, Byk G, Blanche F, Thuillier V, Scherman D, Wils P. Coupling of nuclear localization signals to plasmid DNA and specific interaction of the conjugates with importin alpha. Bioconjug Chem. 1999;10:49–55.

CAS  Google Scholar 

Neves C, Byk G, Scherman D, Wils P. Coupling of a targeting peptide to plasmid DNA by covalent triple helix formation. FEBS Lett. 1999;453:41–45.

CAS  Google Scholar 

Sebestyen MG, Ludtke JJ, Bassik MC, Zhang G, Budker V, Lukhtanov EA, et al. DNA vector chemistry: the covalent attachment of signal peptides to plasmid DNA. Nat Biotechnol. 1998;16:80–85.

CAS  Google Scholar 

Slattum PS, Loomis AG, Machnik KJ, Watt MA, Duzeski JL, Budker VG, et al. Efficient in vitro and in vivo expression of covalently modified plasmid DNA. Mol Ther. 2003;8:255–63.

CAS  Google Scholar 

Branden LJ, Mohamed AJ, Smith CI. A peptide nucleic acid-nuclear localization signal fusion that mediates nuclear transport of DNA. Nat Biotechnol. 1999;17:784–7.

CAS  Google Scholar 

Roulon T, Coulaud D, Delain E, Le Cam E, Helene C, Escude C. Padlock oligonucleotides as a tool for labeling superhelical DNA. Nucleic Acids Res. 2002;30:E12.

Google Scholar 

Roulon T, Helene C, Escude C. Coupling of a targeting peptide to plasmid DNA using a new type of padlock oligonucleotide. Bioconjug Chem. 2002;13:1134–9.

CAS  Google Scholar 

Gao H, Goncalves C, Maze D, Pichon C, Midoux P. CEBA: a new heterobifunctional reagent for plasmid DNA functionalization by click chemistry. Int J Pharm. 2021;601:120566.

CAS  Google Scholar 

Bertrand E, Goncalves C, Billiet L, Gomez JP, Pichon C, Cheradame H, et al. Histidinylated linear PEI: a new efficient non-toxic polymer for gene transfer. Chem Commun. 2011;47:12547–9.

CAS  Google Scholar 

Kilkenny C, Browne WJ, Cuthill IC, Emerson M, Altman DG. Improving bioscience research reporting: the ARRIVE guidelines for reporting animal research. PLoS Biol. 2010;8:e1000412.

Google Scholar 

Wightman L, Kircheis R, Rossler V, Carotta S, Ruzicka R, Kursa M, et al. Different behavior of branched and linear polyethylenimine for gene delivery in vitro and in vivo. J Gene Med. 2001;3:362–72.

CAS  Google Scholar 

Merdan T, Kunath K, Petersen H, Bakowsky U, Voigt KH, Kopecek J, et al. PEGylation of poly(ethylene imine) affects stability of complexes with plasmid DNA under in vivo conditions in a dose-dependent manner after intravenous injection into mice. Bioconjug Chem. 2005;16:785–92.

CAS  Google Scholar 

Brunner S, Furtbauer E, Sauer T, Kursa M, Wagner E. Overcoming the nuclear barrier: cell cycle independent nonviral gene transfer with linear polyethylenimine or electroporation. Mol Ther. 2002;5:80–6.

CAS  Google Scholar 

Itaka K, Harada A, Yamasaki Y, Nakamura K, Kawaguchi H, Kataoka K. In situ single-cell observation by fluorescence resonance energy transfer reveals fast intra-cytoplasmic delivery and easy release of plasmid DNA complexed with linear polyethylenimine. J Gene Med. 2004;6:76–84.

CAS  Google Scholar 

留言 (0)

沒有登入
gif