Multiple effects of the PHO91 gene knockout in Ogataea parapolymorpha

Agaphonov M, Alexandrov A (2014) Self-excising integrative yeast plasmid vectors containing an intronated recombinase gene. FEMS Yeast Res 14(7):1048–1054. https://doi.org/10.1111/1567-1364.12197

Article  CAS  Google Scholar 

Agaphonov MO, Beburov MYu, Ter-Avanesyan MD, Smirnov VN (1995) A disruption-replacement approach for the targeted integration of foreign genes in Hansenula polymorpha. Yeast 11(13):1241–1247. https://doi.org/10.1002/yea.320111304

Article  CAS  Google Scholar 

Albi T, Serrano A (2016) Inorganic polyphosphate in the microbial world. Emerging roles for a multifaceted biopolymer. World J Microbiol Biotechnol 32(2):27. https://doi.org/10.1007/s11274-015-1983-2

Andreeva N, Ryazanova L, Zvonarev A, Trilisenko L, Kulakovskaya T, Eldarov M (2018) Inorganic polyphosphate in methylotrophic yeasts. Apply Microbiol Biotechnol 102:5235–5244

Article  CAS  Google Scholar 

Andreeva N, Ryazanova L, Ledova L, Trilisenko L, Kulakovskaya T (2022) Stress resistance of Saccharomyces cerevisiae strains overexpressing yeast polyphosphatases. Stresses 2:17–25. https://doi.org/10.3390/Stresses2010002

Article  Google Scholar 

Auesukaree C, Homma T, Tochio H, Shirakawa M, Kaneko Y, Harashima S (2004) Intracellular phosphate serves as a signal for the regulation of the PHO pathway in Saccharomyces cerevisiae. J Biol Chem 279(17):17289–17294. https://doi.org/10.1074/jbc.M312202200

Article  CAS  Google Scholar 

Azevedo C, Saiardi A (2017) Eukaryotic phosphate homeostasis: the inositol pyrophosphate perspective. TIBS 42(3):219–231. https://doi.org/10.1016/j.tibs.2016.10.008

Article  CAS  Google Scholar 

Bensadoun A, Weinstein D (1976) Assay of proteins in the presence of interfering materials. Anal Biochem 70(1):241–250

Article  CAS  Google Scholar 

Canadell D, Gonzalez A, Casado C, Arino J (2015) Functional interactions between potassium and phosphate homeostasis in Saccharomyces cerevisiae. Mol Microbiol 95(3):555–572. https://doi.org/10.1111/mmi

Article  CAS  Google Scholar 

Choi J, Rajagopa A, Xu YF, Rabinowitz JD, O'Shea EK (2017) A systematic genetic screen for genes involved in sensing inorganic phosphate availability in Saccharomyces cerevisiae. PLoS One 12(5):e0176085. https://doi.org/10.1371/journal.pone.0176085

Culotta VC, Daly MJ (2013) Manganese complexes: diverse metabolic routes to oxidative stress resistance in prokaryotes and yeast. ARS 9(9):933–944. https://doi.org/10.1089/ars.2012.5093

Article  CAS  Google Scholar 

Eskes E, Deprez MA, Wilms T, Winderickx J (2018) pH homeostasis in yeast; the phosphate perspective. Curr Genet 64(1):155–161. https://doi.org/10.1007/s00294-017-0743-2

Article  CAS  Google Scholar 

Giuseppin MLF, van Eijk HMJ, Bes BCM (1988) Molecular regulation of methanol oxidase activity in continuous cultures of Hansenula polymorpha. Biotechnol Bioeng 32:577–583

Article  CAS  Google Scholar 

Genu V, Gödecke S, Hollenberg CP, Pereira GG (2003) The Hansenula polymorpha MOX gene presents two alternative transcription start points differentially utilized and sensitive to respiratory activity. Eur J Biochem 270(11):2467–2475

Article  CAS  Google Scholar 

Góth L (1991) A simple method for determination of serum catalase activity and revision of reference range. Clin Chim Acta 196(2–3):143–151. https://doi.org/10.1016/0009-8981(91)90067-m

Article  Google Scholar 

Gray MJ, Jakob U (2015) Oxidative stress protection by polyphosphate-new roles for an old enter player. Curr Opin Microb 24:1–6. https://doi.org/10.1016/j.mib.2014.12.004

Article  CAS  Google Scholar 

Gruzman MB, Titorenko VI, Ashin VV, Lusta KA, Trotsenko YA (1996) Multiple molecular forms of alcohol oxidase from the methylotrophic yeast Pichia Methanolica. Biochemistry (Moscow) 61(12):1537–1544

Google Scholar 

Hürlimann HC, Stadler-Waibel M, Werner TP, Freimoser FM (2007) Pho91 is a vacuolar phosphate transporter that regulates phosphate and polyphosphate metabolism in Saccharomyces cerevisiae. Mol Biol Cell 18(11):4438–4445

Article  Google Scholar 

Jensen LT, Ajua-Alemanji M, Culotta VC (2003) The Saccharomyces cerevisiae high affinity phosphate transporter encoded by PHO84 also functions in manganese homeostasis. J Biol Chem 278:42036–42040

Article  CAS  Google Scholar 

Karginov AV, Fokina AV, Kang HA, Kalebina TS, Sabirzyanova TA, Ter-Avanesyan MD, Agaphonov MO (2018) Dissection of differential vanadate sensitivity in two Ogataea species links protein glycosylation and phosphate transport regulation. Sci Rep 8:16428. https://doi.org/10.1038/s41598-018-34888-5

Article  CAS  Google Scholar 

Kulakovskaya TV, Andreeva NA, Karpov AV, Sidorov IA, Kulaev IS (1999) Hydrolysis of tripolyphosphate by purified exopolyphosphatase of Saccharomyces cerevisiae cytosol: kinetic model. Biochemistry (Moscow) 64:990–993

Lonetti A, Szijgyarto Z, Bosch D, Loss O, Azevedo C, Saiardi A (2011) Identification of an evolutionarily conserved family of inorganic polyphosphate endopolyphosphatases. J Biol Chem 286:31966–31974. https://doi.org/10.1074/jbc.M111.266320

Article  CAS  Google Scholar 

Morrissette VA, Rolfes RJ (2020) The intersection between stress responses and inositol pyrophosphates in Saccharomyces cerevisiae. Curr Genet 66:901–910. https://doi.org/10.1007/s00294-020-01078-8

Mouillon JM, Persson BL (2006) New aspects on phosphate sensing and signaling in Saccharomyces cerevisiae. FEMS Yeast Res 6(2):171–176. https://doi.org/10.1111/j.1567-1364.2006.00036.x

Article  CAS  Google Scholar 

Ozimek P, Marten Veenhuis M, van der Klei IJ (2005) Alcohol oxidase: a complex peroxisomal, oligomeric flavoprotein. FEMS Yeast Res 5:975–983

Article  CAS  Google Scholar 

Pinson B, Merle M, Franconi JM, Daignan-Fornier B (2004) Low affinity orthophosphate carriers regulate PHO gene expression independently of internal orthophosphate concentration in Saccharomyces cerevisiae. J Biol Chem 279(34):35273–35280. https://doi.org/10.1074/jbc.M405398200

Article  CAS  Google Scholar 

Popova Y, Thayumanavan P, Lonati E, Agrochao M, Thevelein JM (2010) Transport and signaling through the phosphate-binding site of the yeast Pho84 phosphate transceptor. Proc Natnl Acad Sci USA 107:2890–2895

Article  CAS  Google Scholar 

Potapenko E, Cordeiro CD, Huang G, Storey M, Wittwer C, Dutta AK, Jessen HJ, Starai VJ, Docampo R (2018) 5-Diphosphoinositol pentakisphosphate (5-IP7) regulates phosphate release from acidocalcisomes and yeast vacuoles. J Biol Chem 293(49):19101–19112. https://doi.org/10.1074/jbc.RA118.005884

Article  CAS  Google Scholar 

Rao NN, Gómez-García MR, Kornberg A (2009) Inorganic polyphosphate: essential for growth and survival. Ann Rev Biochem 78:605–647

Article  CAS  Google Scholar 

Reddi AR, Jensen LT, Culotta VC (2009) Manganese homeostasis in Saccharomyces cerevisiae. Chem Rev 109:4722–4732

Article  CAS  Google Scholar 

Sabbagh Y (2013) Phosphate as a sensor and signaling molecule. Clin Nephr 79(1):57–65. https://doi.org/10.5414/CN107322

Article  CAS  Google Scholar 

Sohn JH, Choi ES, Kim CH, Agaphonov MO, Ter-Avanesyan MD, Rhee JS, Rhee SK (1996) A novel autonomously replicating sequence (ARS) for multiple integration in the yeast Hansenula polymorpha DL-1. J Bacteriol 178(15):4420–4428. https://doi.org/10.1128/jb.178.15.4420-4428

Thomas MR, O’Shea EK (2005) An intracellular phosphate buffer filters transient fluctuations in extracellular phosphate levels. Proc Nat Acad Sci USA 102(27):9565–9570. https://doi.org/10.1073/pnas.0501122102

Article  CAS  Google Scholar 

Tomar P, Sinha H (2014) Conservation of PHO pathway in ascomycetes and the role of Pho84. J Biosci 39(3):525–536. https://doi.org/10.1007/s12038-014-9435-y

Article  CAS  Google Scholar 

Tomashevsky A, Kulakovskaya E, Trilisenko L, Kulakovskiy IV, Kulakovskaya T, Fedorov A, Eldarov M (2021) VTC4 Polyphosphate polymerase knockout increases stress resistance of Saccharomyces cerevisiae cells. Biology 10:487. https://doi.org/10.3390/biology10060487

Article  CAS  Google Scholar 

Trilisenko L, Zvonarev A, Valiakhmetov A, Penin AA, Eliseeva IA, Ostroumov V, Kulakovskiy IV, Kulakovskaya T (2019) The reduced level of inorganic polyphosphate mobilizes antioxidant and manganese-resistance systems in Saccharomyces cerevisiae. Cells 8(5):461. https://doi.org/10.3390/cells8050461

Article  CAS  Google Scholar 

Vagabov VM, Trilisenko LV, Kulakovskaya TV, Kulaev IS (2008) Effect of a carbon source on polyphosphate accumulation in Saccharomyces cerevisiae. FEMS Yeast Res 8:877–882. https://doi.org/10.1111/j.1567-1364.2008.00420.x

Wild R, Gerasimaite R, Jung J-Y, Truffault V, Pavlovic I, Schmidt A, Saiardi A, Jessen HJ, Poirier Y, Hothorn M, Mayer A (2016) Control of eukaryotic phosphate homeostasis by inositol polyphosphate sensor domains. Science 352(6288):986–990. https://doi.org/10.1126/science.aad9858

Article  CAS  Google Scholar 

Wykoff DD, Rizvi AH, Raser JM, Margolin B, O’Shea EK (2007) Positive feedback regulates switching of phosphate transporters in S. cerevisiae. Mol Cell 27:1005–1013. https://doi.org/10.1016/j.molcel.2007.07.022

Article  CAS  Google Scholar 

Yurimoto H, Sakai Y (2009) Methanol-inducible gene expression and heterologous protein production in the methylotrophic yeast Candida boidinii. Biotechnol Appl Biochem 53:85–92. https://doi.org/10.1042/BA20090030

Article  CAS  Google Scholar 

Yurimoto Y, Yasuyoshi Sakai Y, Kato N (2002) Chapter 5. Methanol metabolism. In: Gellissen G (eds) Hansenula polymorpha: Biology and Applications. Wiley‐VCH Verlag GmbH. https://doi.org/10.1002/3527602356.ch5

留言 (0)

沒有登入
gif