Inflammation and DNA damage: cause, effect or both

Payandeh, Z., Pirpour Tazehkand, A., Azargoonjahromi, A., Almasi, F. & Alagheband Bahrami, A. The role of cell organelles in rheumatoid arthritis with focus on exosomes. Biol. Proced. Online 23, 20 (2021).

Google Scholar 

Yao, R. Q., Ren, C., Xia, Z. F. & Yao, Y. M. Organelle-specific autophagy in inflammatory diseases: a potential therapeutic target underlying the quality control of multiple organelles. Autophagy 17, 385–401 (2020).

Google Scholar 

Russo, S., Kwiatkowski, M., Govorukhina, N., Bischoff, R. & Melgert, B. N. Meta-inflammation and metabolic reprogramming of macrophages in diabetes and obesity: the importance of metabolites. Front. Immunol. 12, 746151 (2021).

CAS  Google Scholar 

Ferrucci, L. & Fabbri, E. Inflammageing: chronic inflammation in ageing, cardiovascular disease, and frailty. Nat. Rev. Cardiol. 15, 505–522 (2018).

CAS  Google Scholar 

Nastasi, C., Mannarino, L. & D’Incalci, M. DNA damage response and immune defense. Int. J. Mol. Sci. 21, 7504 (2020).

CAS  Google Scholar 

Alfano, M. et al. Aging, inflammation and DNA damage in the somatic testicular niche with idiopathic germ cell aplasia. Nat. Commun. 12, 5205 (2021).

CAS  Google Scholar 

Higo, T. et al. DNA single-strand break-induced DNA damage response causes heart failure. Nat. Commun. 8, 15104 (2017).

Google Scholar 

Xue, W. et al. Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas. Nature 445, 656–660 (2007).

CAS  Google Scholar 

Liu, J.-Y. et al. Cells exhibiting strong p16INK4a promoter activation in vivo display features of senescence. Proc. Natl Acad. Sci. USA 116, 2603–2611 (2019).

CAS  Google Scholar 

Yosef, R. et al. p21 maintains senescent cell viability under persistent DNA damage response by restraining JNK and caspase signaling. EMBO J. 36, 2280–2295 (2017).

CAS  Google Scholar 

Feringa, F. M. et al. Persistent repair intermediates induce senescence. Nat. Commun. 9, 3923 (2018).

CAS  Google Scholar 

Gire, V. & Dulić, V. Senescence from G2 arrest, revisited. Cell Cycle 14, 297–304 (2015).

CAS  Google Scholar 

Terzi, M. Y., Izmirli, M. & Gogebakan, B. The cell fate: senescence or quiescence. Mol. Biol. Rep. 43, 1213–1220 (2016).

CAS  Google Scholar 

Shaukat, Z., Liu, D. & Gregory, S. Sterile inflammation in Drosophila. Mediators Inflamm. 2015, 369286 (2015).

Google Scholar 

Burton, D. G. A. & Faragher, R. G. A. Cellular senescence: from growth arrest to immunogenic conversion. Age 37, 27 (2015).

CAS  Google Scholar 

Schmitt, C. A., Wang, B. & Demaria, M. Senescence and cancer — role and therapeutic opportunities. Nat. Rev. Clin. Oncol. 19, 619–636 (2022).

Google Scholar 

Ditch, S. & Paull, T. T. The ATM protein kinase and cellular redox signaling: beyond the DNA damage response. Trends Biochemical Sci. 37, 15–22 (2012).

CAS  Google Scholar 

Stokes, M. P. et al. Profiling of UV-induced ATM/ATR signaling pathways. Proc. Natl Acad. Sci. USA 104, 19855–19860 (2007).

CAS  Google Scholar 

Sobanski, T. et al. Cell metabolism and DNA repair pathways: implications for cancer therapy. Front. Cell Dev. Biol. 9, 633305 (2021).

Google Scholar 

Turgeon, M.-O., Perry, N. J. S. & Poulogiannis, G. DNA damage, repair, and cancer metabolism. Front. Oncol. 8, 15 (2018).

Google Scholar 

Hamsanathan, S. et al. Integrated -omics approach reveals persistent DNA damage rewires lipid metabolism and histone hyperacetylation via MYS-1/Tip60. Sci. Adv. 8, eabl6083 (2022).

CAS  Google Scholar 

Rodier, F. et al. Persistent DNA damage signalling triggers senescence-associated inflammatory cytokine secretion. Nat. Cell Biol. 11, 973–979 (2009).

CAS  Google Scholar 

Foley, J. F. ATM and inflammation. Sci. Signal. 2, ec265 (2009).

Google Scholar 

Fumagalli, M. & d’Adda di Fagagna, F. SASPense and DDRama in cancer and ageing. Nat. Cell Biol. 11, 921–923 (2009).

CAS  Google Scholar 

Meng, J., Liu, X. & Cao, X. A new cytosolic DNA-recognition pathway for DNA-induced inflammatory responses. Cell. Mol. Immunol. 11, 506–509 (2014).

CAS  Google Scholar 

Schlee, M. & Hartmann, G. Discriminating self from non-self in nucleic acid sensing. Nat. Rev. Immunol. 16, 566–580 (2016).

CAS  Google Scholar 

Gavin, A. L. et al. Cleavage of DNA and RNA by PLD3 and PLD4 limits autoinflammatory triggering by multiple sensors. Nat. Commun. 12, 5874 (2021).

CAS  Google Scholar 

Roers, A., Hiller, B. & Hornung, V. Recognition of endogenous nucleic acids by the innate immune system. Immunity 44, 739–754 (2016).

CAS  Google Scholar 

Okude, H., Ori, D. & Kawai, T. Signaling through nucleic acid sensors and their roles in inflammatory diseases. Front. Immunol. 11, 625833 (2021).

Google Scholar 

Russo, G. et al. DNA damage and repair modify DNA methylation and chromatin domain of the targeted locus: mechanism of allele methylation polymorphism. Sci. Rep. 6, 33222 (2016).

CAS  Google Scholar 

Pezone, A. et al. High-coverage methylation data of a gene model before and after DNA damage and homologous repair. Sci. Data 4, 170043 (2017).

CAS  Google Scholar 

Allen, B., Pezone, A., Porcellini, A., Muller, M. T. & Masternak, M. M. Non-homologous end joining induced alterations in DNA methylation: a source of permanent epigenetic change. Oncotarget 8, 40359–40372 (2017).

Google Scholar 

Sutton, L. P. et al. DNA methylation changes following DNA damage in prostate cancer cells. Epigenetics 14, 989–1002 (2019).

Google Scholar 

Bell, C. G. et al. DNA methylation aging clocks: challenges and recommendations. Genome Biol. 20, 249 (2019).

Bettencourt, I. A. & Powell, J. D. Targeting metabolism as a novel therapeutic approach to autoimmunity, inflammation, and transplantation. J. Immunol. 198, 999–1005 (2017).

CAS  Google Scholar 

Ferrara, A. L., Liotti, A., Pezone, A. & De Rosa, V. Therapeutic opportunities to modulate immune tolerance through the metabolism-chromatin axis. Trends Endocrinol. Metab. 33, 507–521 (2022).

CAS  Google Scholar 

Volman, Y., Hefetz, R., Galun, E. & Rachmilewitz, J. DNA damage alters EGFR signaling and reprograms cellular response via Mre-11. Sci. Rep. 12, 5760 (2022).

CAS  Google Scholar 

Lanz, M. C., Dibitetto, D. & Smolka, M. B. DNA damage kinase signaling: checkpoint and repair at 30 years. EMBO J. 38, e101801 (2019).

Google Scholar 

Kargapolova, Y. et al. Overarching control of autophagy and DNA damage response by CHD6 revealed by modeling a rare human pathology. Nat. Commun. 12, 3014 (2021).

Google Scholar 

Ruiz-Losada, M. et al. Coordination between cell proliferation and apoptosis after DNA damage in Drosophila. Cell Death Differ. 29, 832–845 (2021).

Google Scholar 

De Zio, D., Cianfanelli, V. & Cecconi, F. New insights into the link between DNA damage and apoptosis. Antioxid. Redox Signal. 19, 559–571 (2013).

Google Scholar 

Blackford, A. N. & Jackson, S. P. ATM, ATR, and DNA-PK: the trinity at the heart of the DNA damage response. Mol. Cell 66, 801–817 (2017).

CAS  Google Scholar 

Medzhitov, R. The spectrum of inflammatory responses. Science 374, 1070–1075 (2021).

CAS  Google Scholar 

von Zglinicki, T., Wan, T. & Miwa, S. Senescence in post-mitotic cells: a driver of aging? Antioxid. Redox Signal. 34, 308–323 (2021).

Google Scholar 

Kumari, R. & Jat, P. Mechanisms of cellular senescence: cell cycle arrest and senescence associated secretory phenotype. Front. Cell Dev. Biol. 9, 645593 (2021).

Google Scholar 

Ortega, P., Gómez-González, B. & Aguilera, A. Heterogeneity of DNA damage incidence and repair in different chromatin contexts. DNA Repair 107, 103210 (2021).

CAS  Google Scholar 

Hewitt, G. et al. Telomeres are favoured targets of a persistent DNA damage response in ageing and stress-induced senescence. Nat. Commun. 3, 708 (2012).

Google Scholar 

Doksani. The response to DNA damage at telomeric repeats and its consequences for telomere function. Genes 10, 318 (2019).

CAS  Google Scholar 

Cao, D. et al. Disruption of telomere integrity and DNA repair machineries by KML001 induces T cell senescence, apoptosis, and cellular dysfunctions. Front. Immunol. 10, 1152 (2019).

CAS  Google Scholar 

Wright, W. E., Piatyszek, M. A., Rainey, W. E., Byrd, W. & Shay, J. W. Telomerase activity in human germline and embryonic tissues and cells. Dev. Genet. 18, 173–179 (1996).

CAS  Google Scholar 

Hayflick, L. & Moorhead, P. S. The serial cultivation of human diploid cell strains. Exp. Cell Res. 25, 585–621 (1961).

CAS  Google Scholar 

Bernadotte, A., Mikhelson, V. M. & Spivak, I. M. Markers of cellular senescence. Telomere shortening as a marker of cellular senescence. Aging 8, 3–11 (2016).

CAS  Google Scholar 

Ghadaouia, S. et al. Homologous recombination-mediated irreversible genome damage underlies telomere-induced senescence. Nucleic Acids Res. 49, 11690–11707 (2021).

CAS  Google Scholar 

Rufini, A., Tucci, P., Celardo, I. & Melino, G. Senescence and aging: the critical roles of p53. Oncogene 32, 5129–5143 (2013).

CAS  Google Scholar 

Qian, Y. & Chen, X. Senescence regulation by the p53 protein family. Methods Mol. Biol. 2013, 37–61 (2013).

Google Scholar 

Zhao, Y. et al. Telomere extension occurs at most chromosome ends and is uncoupled from fill-in in human cancer cells. Cell 138, 463–475 (2009).

CAS  Google Scholar 

Wang, B., Kohli, J. & Demaria, M. Senescent cells in cancer therapy: friends or foes? Trends Cancer 6, 838–857 (2020).

CAS  Google Scholar 

Gorgoulis, V. et al. Cellular senescence: defining a path forward. Cell 179, 813–827 (2019).

CAS  Google Scholar 

Cao, Y. et al. N-Acetyltransferase 10 promotes micronuclei formation to activate the senescence-associated secretory phenotype machinery in colorectal cancer cells. Transl. Oncol. 13, 100783 (2020).

Google Scholar 

Suzuki, K., Kawamura, K., Ujiie, R., Nakayama, T. & Mitsutake, N. Characterization of radiation-induced micronuclei associated with premature senescence, and their selective removal by senolytic drug, ABT-263. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2022, 876–877 (2022).

Google Scholar 

Krupina, K., Goginashvili, A. & Cleveland, D. W. Causes and consequences of micronuclei. Curr. Opin. Cell Biol. 70, 91–99 (2021).

CAS  Google Scholar 

Muñoz-Espín, D. et al. Programmed cell senescence during mammalian embryonic development. Cell 155, 1104–1118 (2013).

Google Scholar 

Cipriano, R. et al. TGF-β signaling engages an ATM-CHK2-p53-independent RAS-induced senescence and prevents malignant transformation in human mammary epithelial cells. Proc. Natl Acad. Sci. USA 108, 8668–8673 (2011).

留言 (0)

沒有登入
gif