Human in vitro spermatogenesis as a regenerative therapy — where do we stand?

Heller, C. H. & Clermont, Y. Kinetics of the germinal epithelium in man. Recent. Prog. Horm. Res. 20, 545–575 (1964).

CAS  Google Scholar 

Suarez, S. S. & Pacey, A. A. Sperm transport in the female reproductive tract. Hum. Reprod. Update 12, 23–37 (2006).

CAS  Google Scholar 

Agarwal, A., Mulgund, A., Hamada, A. & Chyatte, M. R. A unique view on male infertility around the globe. Reprod. Biol. Endocrinol. 13, 37 (2015).

Google Scholar 

Wang, J. & Sauer, M. V. In vitro fertilization (IVF): a review of 3 decades of clinical innovation and technological advancement. Ther. Clin. Risk Manag. 2, 355–364 (2006).

Google Scholar 

Practice Committee of the American Society for Reproductive Medicine. Diagnostic evaluation of the infertile male: a committee opinion. Fertil. Steril. 103, e18–e25 (2015).

Google Scholar 

Vincent, M. C. et al. Cytogenetic investigations of infertile men with low sperm counts: a 25-year experience. J. Androl. 23, 18–22 (2002). discussion 44–45.

Google Scholar 

Jungwirth, A. et al. European Association of Urology guidelines on male infertility: the 2012 update. Eur. Urol. 62, 324–332 (2012).

Google Scholar 

Flannigan, R. K. & Schlegel, P. N. Microdissection testicular sperm extraction: preoperative patient optimization, surgical technique, and tissue processing. Fertil. Steril. 111, 420–426 (2019).

Google Scholar 

Chiba, K., Enatsu, N. & Fujisawa, M. Management of non-obstructive azoospermia. Reprod. Med. Biol. 15, 165–173 (2016).

CAS  Google Scholar 

Achermann, A. P. P., Pereira, T. A. & Esteves, S. C. Microdissection testicular sperm extraction (micro-TESE) in men with infertility due to nonobstructive azoospermia: summary of current literature. Int. Urol. Nephrol. 53, 2193–2210 (2021).

CAS  Google Scholar 

Ghieh, F., Mitchell, V., Mandon-Pepin, B. & Vialard, F. Genetic defects in human azoospermia. Basic. Clin. Androl. 29, 4 (2019).

Google Scholar 

Meistrich, M. L. Male gonadal toxicity. Pediatr. Blood Cancer 53, 261–266 (2009).

Google Scholar 

Del-Pozo-Lerida, S. et al. Preservation of fertility in patients with cancer (Review). Oncol. Rep. 41, 2607–2614 (2019).

CAS  Google Scholar 

Keros, V. et al. Methods of cryopreservation of testicular tissue with viable spermatogonia in pre-pubertal boys undergoing gonadotoxic cancer treatment. Hum. Reprod. 22, 1384–1395 (2007).

CAS  Google Scholar 

Mirzapour, T., Movahedin, M., Koruji, M. & Nowroozi, M. R. Xenotransplantation assessment: morphometric study of human spermatogonial stem cells in recipient mouse testes. Andrologia 47, 626–633 (2015).

CAS  Google Scholar 

Hou, M., Andersson, M., Eksborg, S., Soder, O. & Jahnukainen, K. Xenotransplantation of testicular tissue into nude mice can be used for detecting leukemic cell contamination. Hum. Reprod. 22, 1899–1906 (2007).

Google Scholar 

Sato, Y. et al. Xenografting of testicular tissue from an infant human donor results in accelerated testicular maturation. Hum. Reprod. 25, 1113–1122 (2010).

CAS  Google Scholar 

Schlatt, S. et al. Limited survival of adult human testicular tissue as ectopic xenograft. Hum. Reprod. 21, 384–389 (2006).

CAS  Google Scholar 

Jahnukainen, K., Hou, M., Petersen, C., Setchell, B. & Soder, O. Intratesticular transplantation of testicular cells from leukemic rats causes transmission of leukemia. Cancer Res. 61, 706–710 (2001).

CAS  Google Scholar 

Sadri-Ardekani, H. et al. Eliminating acute lymphoblastic leukemia cells from human testicular cell cultures: a pilot study. Fertil. Steril. 101, 1072–1078.e1 (2014).

Google Scholar 

Sadri-Ardekani, H. & Atala, A. Testicular tissue cryopreservation and spermatogonial stem cell transplantation to restore fertility: from bench to bedside. Stem Cell Res. Ther. 5, 68 (2014).

Google Scholar 

Jahnukainen, K., Ehmcke, J., Nurmio, M. & Schlatt, S. Autologous ectopic grafting of cryopreserved testicular tissue preserves the fertility of prepubescent monkeys that receive sterilizing cytotoxic therapy. Cancer Res. 72, 5174–5178 (2012).

CAS  Google Scholar 

Sato, T. et al. In vitro production of functional sperm in cultured neonatal mouse testes. Nature 471, 504–507 (2011).

CAS  Google Scholar 

Sato, T. et al. Testis tissue explantation cures spermatogenic failure in c-Kit ligand mutant mice. Proc. Natl Acad. Sci. USA 109, 16934–16938 (2012).

CAS  Google Scholar 

Neto, F. T., Bach, P. V., Najari, B. B., Li, P. S. & Goldstein, M. Spermatogenesis in humans and its affecting factors. Semin. Cell Dev. Biol. 59, 10–26 (2016).

Google Scholar 

Kanatsu-Shinohara, M. & Shinohara, T. Spermatogonial stem cell self-renewal and development. Annu. Rev. Cell Dev. Bi 29, 163–187 (2013).

CAS  Google Scholar 

Singh, R. & Hansen, D. Regulation of the balance between proliferation and differentiation in germ line stem cells. Results Probl. Cell Differ. 59, 31–66 (2017).

CAS  Google Scholar 

Paniagua, R. & Nistal, M. Morphological and histometric study of human spermatogonia from birth to the onset of puberty. J. Anat. 139, 535–552 (1984).

Google Scholar 

Amann, R. P. The cycle of the seminiferous epithelium in humans: a need to revisit. J. Androl. 29, 469–487 (2008).

Google Scholar 

Goossens, E. & Tournaye, H. Adult stem cells in the human testis. Semin. Reprod. Med. 31, 39–48 (2013).

CAS  Google Scholar 

Clermont, Y. Spermatogenesis in man. A study of the spermatogonial population. Fertil. Steril. 17, 705–721 (1966).

CAS  Google Scholar 

van Alphen, M. M., van de Kant, H. J. & de Rooij, D. G. Repopulation of the seminiferous epithelium of the rhesus monkey after X irradiation. Radiat. Res. 113, 487–500 (1988).

Google Scholar 

Guo, J. et al. The adult human testis transcriptional cell atlas. Cell Res. 28, 1141–1157 (2018).

CAS  Google Scholar 

Guo, J. et al. The dynamic transcriptional cell atlas of testis development during human puberty. Cell Stem Cell 26, 262–276.e4 (2020).

CAS  Google Scholar 

Ehmcke, J. & Schlatt, S. A revised model for spermatogonial expansion in man: lessons from non-human primates. Reproduction 132, 673–680 (2006).

CAS  Google Scholar 

Mruk, D. D. & Cheng, C. Y. The mammalian blood-testis barrier: its biology and regulation. Endocr. Rev. 36, 564–591 (2015).

CAS  Google Scholar 

Pelletier, R. M. The blood-testis barrier: the junctional permeability, the proteins and the lipids. Prog. Histochem. Cytochem. 46, 49–127 (2011).

Google Scholar 

Gerton, J. L. & Hawley, R. S. Homologous chromosome interactions in meiosis: diversity amidst conservation. Nat. Rev. Genet. 6, 477–487 (2005).

CAS  Google Scholar 

Hess, R. A. & de Franca, L. R. in Molecular Mechanisms in Spermatogenesis. Advances in Experimental Medicine and Biology Vol. 636 (ed. Cheng, C. Y.) 1–15 (Springer, 2009).

Clermont, Y. & Leblond, C. P. Spermiogenesis of man, monkey, ram and other mammals as shown by the periodic acid-Schiff technique. Am. J. Anat. 96, 229–253 (1955).

CAS  Google Scholar 

Oko, R. & Sutovsky, P. Biogenesis of sperm perinuclear theca and its role in sperm functional competenc and fertilization. J. Reprod. Immunol. 83, 2–7 (2009).

CAS  Google Scholar 

Foresta, C., Zorzi, M., Rossato, M. & Varotto, A. Sperm nuclear instability and staining with aniline blue: abnormal persistence of histones in spermatozoa in infertile men. Int. J. Androl. 15, 330–337 (1992).

CAS  Google Scholar 

Zhao, M. et al. Transition nuclear proteins are required for normal chromatin condensation and functional sperm development. Genesis 38, 200–213 (2004).

CAS  Google Scholar 

Wang, T., Gao, H., Li, W. & Liu, C. Essential role of histone replacement and modifications in male fertility. Front. Genet. 10, 962 (2019).

CAS  Google Scholar 

Gur, Y. & Breitbart, H. Protein synthesis in sperm: dialog between mitochondria and cytoplasm. Mol. Cell Endocrinol. 282, 45–55 (2008).

CAS  Google Scholar 

Breucker, H., Schafer, E. & Holstein, A. F. Morphogenesis and fate of the residual body in human spermiogenesis. Cell Tissue Res. 240, 303–309 (1985).

CAS  Google Scholar 

Tesarik, J. et al. Differentiation of spermatogenic cells during in-vitro culture of testicular biopsy samples from patients with obstructive azoospermia: effect of recombinant follicle stimulating hormone. Hum. Reprod. 13, 2772–2781 (1998).

CAS  Google Scholar 

Tesarik, J., Guido, M., Mendoza, C. & Greco, E. Human spermatogenesis in vitro: respective effects of follicle-stimulating hormone and testosterone on meiosis, spermiogenesis, and Sertoli cell apoptosis. J. Clin. Endocrinol. Metab. 83, 4467–4473 (1998).

CAS  Google Scholar 

Tesarik, J., Bahceci, M., Ozcan, C., Greco, E. & Mendoza, C. Restoration of fertility by in-vitro spermatogenesis. Lancet 353, 555–556 (1999).

CAS  Google Scholar 

Cremades, N., Bernabeu, R., Barros, A. & Sousa, M. In-vitro maturation of round spermatids using co-culture on vero cells. Hum. Reprod. 14, 1287–1293 (1999).

CAS  Google Scholar 

Tanaka, A. et al. Completion of meiosis in human primary spermatocytes through in vitro coculture with vero cells. Fertil. Steril. 79, 795–801 (2003).

Google Scholar 

Sato, T. et al. In vitro spermatogenesis in explanted adult mouse testis tissues. PLoS ONE https://doi.org/10.1371/journal.pone.0130171 (2015).

Google Scholar 

Komeya, M. et al. Long-term ex vivo maintenance of testis tissues producing fertile sperm in a microfluidic device. Sci. Rep. 6, 21472 (2016).

CAS  Google Scholar 

Matsumura, T. et al. Rat in vitro spermatogenesis promoted by chemical supplementations and oxygen-tension control. Sci. Rep. 11, 3458 (2021).

CAS  Google Scholar 

Sanjo, H. et al. In vitro mouse spermatogenesis with an organ culture method in chemically defined medium. PLoS ONE 13, e0192884 (2018).

Google Scholar 

Sanjo, H. et al. Antioxidant vitamins and lysophospholipids are critical for inducing mouse spermatogenesis under organ culture conditions. FASEB J. 34, 9480–9497 (2020).

CAS  Google Scholar 

Yamanaka, H. et al. A monolayer microfluidic device supporting mouse spermatogenesis with improved visibility. Biochem. Biophys. Res. Commun. 500, 885–891 (2018).

CAS  Google Scholar 

Boitani, C., Politi, M. G. & Menna, T. Spermatogonial cell proliferation in organ culture of immature rat testis. Biol. Reprod. 48, 761–767 (1993).

CAS  Google Scholar 

Hue, D. et al. Meiotic differentiation of germinal cells in three-week cultures of whole cell population from rat seminiferous tubules. Biol. Reprod. 59, 379–387 (1998).

CAS  Google Scholar 

Le Magueresse-Battistoni, B., Gerard, N. & Jegou, B. Pachytene spermatocytes can achieve meiotic process in vitro. Biochem. Biophys. Res. Commun. 179, 1115–1121 (1991).

Google Scholar 

Marh, J., Tres, L. L., Yamazaki, Y., Yanagimachi, R. & Kierszenbaum, A. L. Mouse round spermatids developed in vitro from preexisting spermatocytes can produce normal offspring by nuclear injection into in vivo-developed mature oocytes. Biol. Reprod. 69, 169–176 (2003).

CAS 

留言 (0)

沒有登入
gif