Molecular docking simulation, drug-likeness assessment, and pharmacokinetic study of some cephalosporin analogues against a penicillin-binding protein of Salmonella typhimurium

Vlad MI, Nuta CD, Cornel, Miron CC, et al. In silico and in vitro experimental studies of new Dibenz[b,e]oxepin-11(6H)one O-(arylcarbamoyl)-oximes designed as potential antimicrobial agents. Molecules. 2020, 25; https://doi.org/10.3390/molecules25020321

De Kraker ME, Stewardson AJ, Harbarth S. Will 10 million people die a year due to antimicrobial resistance by 2050? PLoS Med 2016;13:e1002184.

Article  Google Scholar 

O’Neill J. Review on Antimicrobial Resistance: Tackling a Crisis for the Health and Wealth of Nations; Review on Antimicrobial Resistance: London, UK, 2014.

Scherer CA, Miller SI. Molecular pathogenesis of salmonellae. In: Groisman EA (ed.) Principles of bacterial pathogenesis. Academic, New York, 2001, 266-33.

Grein T, O’Flanagan D, McCarthy T, Bauer D. An outbreak of multidrug-resistant Salmonella typhimurium food poisoning at a wedding reception. Ir Med J 1999;92:238–41.

CAS  Google Scholar 

Helms M, Ethelberg S, Molbak K. International Salmonella Typhimurium DT104 infections, 1992–2001. Emerg Infect Dis. 2005;11:859–67.

Article  Google Scholar 

Crump JA, Medalla FM, Joyce KW, Krueger AL, Hoekstra RM, Whichard JM, Barzilay EJ. Antimicrobial resistance among invasive nontyphoidal Salmonella enterica isolates in the United States: national antimicrobial resistance monitoring system, 1996 to 2007. Antimicrob Agents Chemother 2011;55:1148–54.

Article  CAS  Google Scholar 

Meakins S, Fisher IS, Berghold C, et al. Antimicrobial drug resistance in human nontyphoidal Salmonella isolates in Europe 2000–2004: a report from the Enter-net International Surveillance Network. Microb Drug Resist. 2008;14:31–35.

Article  CAS  Google Scholar 

Hohmann EL. Nontyphoidal salmonellosis. Clin Infect Dis. 2001;15:263–9.

Google Scholar 

Saha RN, Raman M. Modeling of biological activity and pharmacokinetics of cefixime. Indian J Pharm Edu Res. 2005;42:207–14.

Google Scholar 

Harrison CJ, Bratcher D. Cephalosporins: A review. Off J Acad Ped. 2008;29:264–73.

Google Scholar 

Sauvage E, Kerff F, Terrak M, Ayala JA, Charlier P. The penicillin-binding proteins: structure and role in peptidoglycan biosynthesis. FEMS Microbiol Rev 2008;32:234–58.

Article  CAS  Google Scholar 

Navarre WW, Schneewind O. Surface proteins of gram-positive bacteria and mechanisms of their targeting to the cell wall envelope. Microbiol Mol Biol Rev. 1999;63:174–229. https://doi.org/10.1128/MMBR.63.1.174-229.1999

Article  CAS  Google Scholar 

Banzhaf M, Van den Berg van Saparoea B, Terrak M, et al. Cooperativity of pepdidoglycan synthases active in bacteria cell elongation. Mol Microbiol. 2012;85:179–94. https://doi.org/10.1111/j.1365-2958.2012.08103.x

Article  CAS  Google Scholar 

Bertsche U, Breukink E, Kast T, Wolf B, et al. Interaction between two murein (pepdidoglycan) synthases PBP3 and PBP1B, in E.coli. Mol Microbiol. 2006;61:675–90. https://doi.org/10.1111/j.1365-2958.2006.05280

Article  CAS  Google Scholar 

Mueller AE, Egan JFA, Breukink E, Vollmer W, Levin AP. Plasticity of E. coli cell wall metabolism promotes fitness and antibiotic resistance across environmental conditions. eLife. 2019;8:e40754. https://doi.org/10.7554/eLife.40754

Article  Google Scholar 

Shapiro S, Guggenheim B. Inhibition of oral bacteria by phenolic compounds. Part 1. QSAR analysis using molecular connectivity. Quant Struct -Act Relat 1998;17:327–37.

Article  CAS  Google Scholar 

Kore PP, Mutha MM, Antre VR, Oswal JR, Kshirsagar SS. Computer-aided drug design: an innovative tool for modeling. Open J Med Chem. 2012;2:139–48. https://doi.org/10.4236/ojmc.2012.24017

Article  CAS  Google Scholar 

Padole SS, Asnani JA, Chaple DR, Katre GS. A review of approaches in computer-aided drug design in drug discovery. GSC Biol Pharm Sci. 2022;19:075–83. https://doi.org/10.30574/gscbps.2022.19.2.0161

Article  CAS  Google Scholar 

Hossain S, Sarkar B, Prottoy MNI, Araf Y, Taniya MA, Ullah MA. Thrombolytic activity, drug-likeness property and ADME/T analysis of isolated phytochemicals from ginger (Zingiber officinale) using in silico approaches. Mod Res Inflamm. 2019;8:29–43.

Article  CAS  Google Scholar 

Yu H, Adedoyin A. ADME–Tox in drug discovery: Integration of experimental and computational technologies. Drug Discov Today. 2003;8:852–61.

Article  CAS  Google Scholar 

Abishad P, Niveditha P, Unni V, Vergis J, Kurkure NV, Chaudhari S, Rawool DB, Barbuddhe SB. In silico molecular docking and in vitro antimicrobial efficacy of phytochemicals against multi‑drug‑resistant enteroaggregative Escherichia coli and non‑typhoidal Salmonella spp. Gut Pathog. 2021;13:46. https://doi.org/10.1186/s13099-021-00443-3

Article  CAS  Google Scholar 

Almeida FA, Pinto UM, Vanetti MCD. Novel insights from molecular docking of SdiA from Salmonella Enteritidis and Escherichia coli with quorum sensing and quorum quenching molecules. Microb Pathog. 2016;99:178e190.

Article  Google Scholar 

Durhan B, Yalçın E, Çavuşoğlu K, Acar A. Molecular docking assisted biological functions and phytochemical screening of Amaranthus lividus L. extract. Sci Rep. 2022;12:4308. https://doi.org/10.1038/s41598-022-08421-8

Article  CAS  Google Scholar 

Nagasinduja V, Shahitha S, Prakash B, Kumar DJ. Molecular docking analysis of beta-lactamase from Salmonella species with eicosane. Bioinformation. 2022;18:669–74.

Article  Google Scholar 

Ameji JP, Uzairu U, Shallangwa GA, Uba S Virtual screening of novel pyridine derivatives as effective inhibitors of DNA gyrase (GyrA) of Salmonella typhi, Curr Chem Lett., 2022, 12, 1–16.

Trott O, Olson AJ. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem. 2010;31:455–61. https://doi.org/10.1002/jcc.21334

Article  CAS  Google Scholar 

Lipinski CA. Lead and drug-likeness compounds: the rule of five revolution. Drug Discov Today Technol. 2004;1:337–41. https://doi.org/10.1016/j.ddtec.2004

Article  CAS  Google Scholar 

Jasmine SKMD, Reddy VSG, Gorityala N, Sagurthi SR, Mungapati S, Manikanta KN, Allam US. In silico modeling and docking analysis of CTX-M-5, Cefotaxime-Hydrolyzing β Lactamase from human-associated Salmonella Typhimurium. J Pharmacol Pharmacother. 2022;13:135–47.

Article  CAS  Google Scholar 

Konig F, Muller F. Transporters and drug-drug interactions: Important determinants of drug disposition and effects. Phamacol Rev. 2013;65:944–66.

Google Scholar 

Slaughter RL, Edwards DJ. Recent advances: the cytochrome P450 enzymes. Ann Pharmacother. 1995;29:619–24.

Article  CAS  Google Scholar 

留言 (0)

沒有登入
gif