E3 ubiquitin ligases in cancer stem cells: key regulators of cancer hallmarks and novel therapeutic opportunities

E. Batlle, H. Clevers, Cancer stem cells revisited. Nat. Med. 23(10), 1124–1134 (2017). https://doi.org/10.1038/nm.4409

Article  CAS  Google Scholar 

D. Hanahan, Hallmarks of Cancer: New dimensions. Cancer Discov. 12(1), 31–46 (2022). https://doi.org/10.1158/2159-8290.CD-21-1059

Article  CAS  Google Scholar 

Z.J. Lei, J. Wang, H.L. Xiao, Y. Guo, T. Wang, Q. Li, L. Liu, X. Luo, L.L. Fan, L. Lin, C.Y. Mao, S.N. Wang, Y.L. Wei, C.H. Lan, J. Jiang, X.J. Yang, P.D. Liu, D.F. Chen, B. Wang, Lysine-specific demethylase 1 promotes the stemness and chemoresistance of Lgr5(+) liver cancer initiating cells by suppressing negative regulators of β-catenin signaling. Oncogene 34(24), 3188–3198 (2015). https://doi.org/10.1038/onc.2015.129

Article  CAS  Google Scholar 

Z. Wang, B. Wang, Y. Shi, C. Xu, H.L. Xiao, L.N. Ma, S.L. Xu, L. Yang, Q.L. Wang, W.Q. Dang, W. Cui, S.C. Yu, Y.F. Ping, Y.H. Cui, H.F. Kung, C. Qian, X. Zhang, X.W. Bian, Oncogenic miR-20a and miR-106a enhance the invasiveness of human glioma stem cells by directly targeting TIMP-2. Oncogene 34(11), 1407–1419 (2015). https://doi.org/10.1038/onc.2014.75

Article  CAS  Google Scholar 

L. Deng, T. Meng, L. Chen, W. Wei, P. Wang, The role of ubiquitination in tumorigenesis and targeted drug discovery. Signal 5(1), 11 (2020). https://doi.org/10.1038/s41392-020-0107-0

Article  CAS  Google Scholar 

D. Komander, M. Rape, The ubiquitin code. Annu. Rev. Biochem. 81, 203–229 (2012). https://doi.org/10.1146/annurev-biochem-060310-170328

Article  CAS  Google Scholar 

T.E.T. Mevissen, D. Komander, Mechanisms of Deubiquitinase specificity and regulation. Annu. Rev. Biochem. 86, 159–192 (2017). https://doi.org/10.1146/annurev-biochem-061516-044916

Article  CAS  Google Scholar 

T. Wang, H. Wu, S. Liu, Z. Lei, Z. Qin, L. Wen, K. Liu, X. Wang, Y. Guo, Q. Liu, L. Liu, J. Wang, L. Lin, C. Mao, X. Zhu, H. Xiao, X. Bian, D. Chen, C. Xu, B. Wang, SMYD3 controls a Wnt-responsive epigenetic switch for ASCL2 activation and cancer stem cell maintenance. Cancer Lett. 430, 11–24 (2018). https://doi.org/10.1016/j.canlet.2018.05.003

Article  CAS  Google Scholar 

T. Wang, Z.Y. Qin, L.Z. Wen, Y. Guo, Q. Liu, Z.J. Lei, W. Pan, K.J. Liu, X.W. Wang, S.J. Lai, W.J. Sun, Y.L. Wei, L. Liu, L. Guo, Y.Q. Chen, J. Wang, H.L. Xiao, X.W. Bian, D.F. Chen, B. Wang, Epigenetic restriction of hippo signaling by MORC2 underlies stemness of hepatocellular carcinoma cells. Cell Death Differ. 25(12), 2086–2100 (2018). https://doi.org/10.1038/s41418-018-0095-6

Article  CAS  Google Scholar 

L. Yang, P. Shi, G. Zhao, J. Xu, W. Peng, J. Zhang, G. Zhang, X. Wang, Z. Dong, F. Chen, H. Cui, Targeting cancer stem cell pathways for cancer therapy. Sig. Transduct. Target. Ther. 5(1), 8 (2020). https://doi.org/10.1038/s41392-020-0110-5

Article  CAS  Google Scholar 

J.A. Clara, C. Monge, Y. Yang, N. Takebe, Targeting signalling pathways and the immune microenvironment of cancer stem cells - a clinical update. Nat. Rev. Clin. Oncol. 17(4), 204–232 (2020). https://doi.org/10.1038/s41571-019-0293-2

Article  Google Scholar 

B. Wang, Z. Jie, D. Joo, A. Ordureau, P. Liu, W. Gan, J. Guo, J. Zhang, B.J. North, X. Dai, X. Cheng, X. Bian, L. Zhang, J.W. Harper, S.C. Sun, W. Wei, TRAF2 and OTUD7B govern a ubiquitin-dependent switch that regulates mTORC2 signalling. Nature 545(7654), 365–369 (2017). https://doi.org/10.1038/nature22344

Article  CAS  Google Scholar 

A. Strikoudis, M. Guillamot, I. Aifantis, Regulation of stem cell function by protein ubiquitylation. EMBO Rep. 15(4), 365–382 (2014). https://doi.org/10.1002/embr.201338373

Article  CAS  Google Scholar 

N. Cai, M. Li, J. Qu, G.H. Liu, J.C. Izpisua Belmonte, Post-translational modulation of pluripotency. J. Mol. Cell Biol. 4(4), 262–265 (2012). https://doi.org/10.1093/jmcb/mjs031

Article  CAS  Google Scholar 

Y. Kong, Z. Wang, M. Huang, Z. Zhou, Y. Li, H. Miao, X. Wan, J. Huang, X. Mao, C. Chen, CUL7 promotes cancer cell survival through promoting Caspase-8 ubiquitination. Int. J. Cancer 145(5), 1371–1381 (2019). https://doi.org/10.1002/ijc.32239

Article  CAS  Google Scholar 

L. Song, Z.Q. Luo, Post-translational regulation of ubiquitin signaling. J. Cell Biol. 218(6), 1776–1786 (2019). https://doi.org/10.1083/jcb.201902074

Article  CAS  Google Scholar 

S. Haq, B. Suresh, S. Ramakrishna, Deubiquitylating enzymes as cancer stem cell therapeutics. Biochimica et biophysica acta Rev. Cancer 1869(1), 1–10 (2018). https://doi.org/10.1016/j.bbcan.2017.10.004

Article  CAS  Google Scholar 

S.A. Abdul Rehman, Y.A. Kristariyanto, S.Y. Choi, P.J. Nkosi, S. Weidlich, K. Labib, K. Hofmann, Y. Kulathu, MINDY-1 is a member of an evolutionarily conserved and structurally distinct new family of deubiquitinating enzymes. Mol. Cell 63(1), 146–155 (2016). https://doi.org/10.1016/j.molcel.2016.05.009

Article  CAS  Google Scholar 

M.A. Basar, D.B. Beck, A. Werner, Deubiquitylases in developmental ubiquitin signaling and congenital diseases. Cell Death Differ. 28(2), 538–556 (2021). https://doi.org/10.1038/s41418-020-00697-5

Article  CAS  Google Scholar 

F.E. Morreale, H. Walden, Types of ubiquitin ligases. Cell 165(1), 248–248.e1 (2016). https://doi.org/10.1016/j.cell.2016.03.003

Article  CAS  Google Scholar 

N. Zheng, N. Shabek, Ubiquitin ligases: Structure, function, and regulation. Annu. Rev. Biochem. 86, 129–157 (2017). https://doi.org/10.1146/annurev-biochem-060815-014922

Article  CAS  Google Scholar 

D. Rotin, S. Kumar, Physiological functions of the HECT family of ubiquitin ligases. Nat. Rev. Mol. Cell Biol. 10(6), 398–409 (2009). https://doi.org/10.1038/nrm2690

Article  CAS  Google Scholar 

S. Singh, J. Ng, J. Sivaraman, Exploring the “Other” subfamily of HECT E3-ligases for therapeutic intervention. Pharmacol. Ther. 224, (2021). https://doi.org/10.1016/j.pharmthera.2021.107809

M.Y. Ryu, S.K. Cho, Y. Hong, J. Kim, J.H. Kim, G.M. Kim, Y.J. Chen, E. Knoch, B.L. Møller, W.T. Kim, M.F. Lyngkjær, S.W. Yang, Classification of barley U-box E3 ligases and their expression patterns in response to drought and pathogen stresses. BMC Genomics 20(1), 326 (2019). https://doi.org/10.1186/s12864-019-5696-z

Article  Google Scholar 

K.K. Dove, R.E. Klevit, RING-between-RING E3 ligases: Emerging themes amid the variations. J. Mol. Biol. 429(22), 3363–3375 (2017). https://doi.org/10.1016/j.jmb.2017.08.008

Article  CAS  Google Scholar 

P. Wang, X. Dai, W. Jiang, Y. Li, W. Wei, RBR E3 ubiquitin ligases in tumorigenesis. Semin. Cancer Biol. 67(Pt 2), 131–144 (2020). https://doi.org/10.1016/j.semcancer.2020.05.002

Article  CAS  Google Scholar 

J. Low, W. Blosser, M. Dowless, L. Ricci-Vitiani, R. Pallini, R. de Maria, L. Stancato, Knockdown of ubiquitin ligases in glioblastoma cancer stem cells leads to cell death and differentiation. J. Biomol. Screen. 17(2), 152–162 (2012). https://doi.org/10.1177/1087057111422565

Article  CAS  Google Scholar 

M. Quiroga, A. Rodríguez-Alonso, G. Alfonsín, J.J.E. Rodríguez, S.M. Breijo, V. Chantada, A. Figueroa, Protein degradation by E3 ubiquitin ligases in Cancer stem cells. Cancers 14(4), 990 (2022). https://doi.org/10.3390/cancers14040990

Article  CAS  Google Scholar 

D. Senft, J. Qi, Z.A. Ronai, Ubiquitin ligases in oncogenic transformation and cancer therapy. Nat. Rev. Cancer 18(2), 69–88 (2018). https://doi.org/10.1038/nrc.2017.105

Article  CAS  Google Scholar 

S. Hume, C.P. Grou, P. Lascaux, V. D'Angiolella, A.J. Legrand, K. Ramadan, G.L. Dianov, The NUCKS1-SKP2-p21/p27 axis controls S phase entry. Nat. Commun. 12(1), 6959 (2021). https://doi.org/10.1038/s41467-021-27124-8

Article  CAS  Google Scholar 

A. Nowosad, P. Jeannot, C. Callot, J. Creff, R.T. Perchey, C. Joffre, P. Codogno, S. Manenti, A. Besson, p27 controls Ragulator and mTOR activity in amino acid-deprived cells to regulate the autophagy-lysosomal pathway and coordinate cell cycle and cell growth. Nat. Cell Biol. 22(9), 1076–1090 (2020). https://doi.org/10.1038/s41556-020-0554-4

Article  CAS  Google Scholar 

J. Deng, X. Bai, X. Feng, J. Ni, J. Beretov, P. Graham, Y. Li, Inhibition of PI3K/Akt/mTOR signaling pathway alleviates ovarian cancer chemoresistance through reversing epithelial-mesenchymal transition and decreasing cancer stem cell marker expression. BMC Cancer 19(1), 618 (2019). https://doi.org/10.1186/s12885-019-5824-9

Article  CAS  Google Scholar 

C.H. Chan, C.F. Li, W.L. Yang, Y. Gao, S.W. Lee, Z. Feng, H.Y. Huang, K.K.C. Tsai, L.G. Flores, Y. Shao, J.D. Hazle, D. Yu, W. Wei, D. Sarbassov, M.C. Hung, K.I. Nakayama, H.K. Lin, The Skp2-SCF E3 ligase regulates Akt ubiquitination, glycolysis, Herceptin sensitivity, and tumorigenesis. Cell 151(4), 913–914 (2012). https://doi.org/10.1016/j.cell.2012.10.025

Article  CAS  Google Scholar 

W.L. Yang, J. Wang, C.H. Chan, S.W. Lee, A.D. Campos, B. Lamothe, L. Hur, B.C. Grabiner, X. Lin, B.G. Darnay, H.K. Lin, The E3 ligase TRAF6 regulates Akt ubiquitination and activation. Science (New York, N.Y.) 325(5944), 1134–1138 (2009). https://doi.org/10.1126/science.1175065

Article  CAS  Google Scholar 

C.H. Chan, J.K. Morrow, C.F. Li, Y. Gao, G. Jin, A. Moten, L.J. Stagg, J.E. Ladbury, Z. Cai, D. Xu, C.J. Logothetis, M.C. Hung, S. Zhang, H.K. Lin, Pharmacological inactivation of Skp2 SCF ubiquitin ligase restricts cancer stem cell traits and cancer progression. Cell 154(3), 556–568 (2013). https://doi.org/10.1016/j.cell.2013.06.048

Article  CAS  Google Scholar 

C.H. Yeh, M. Bellon, C. Nicot, FBXW7: A critical tumor suppressor of human cancers. Mol. Cancer 17(1), 115 (2018). https://doi.org/10.1186/s12943-018-0857-2

Article  CAS  Google Scholar 

L. Reavie, S.M. Buckley, E. Loizou, S. Takeishi, B. Aranda-Orgilles, D. Ndiaye-Lobry, O. Abdel-Wahab, S. Ibrahim, K.I. Nakayama, I. Aifantis, Regulation of c-Myc ubiquitination controls chronic myelogenous leukemia initiation and progression. Cancer Cell 23(3), 362–375 (2013). https://doi.org/10.1016/j.ccr.2013.01.025

Article  CAS  Google Scholar 

Y. Zhao, X. Xiong, Y. Sun, Cullin-RING ligase 5: Functional characterization and its role in human cancers. Semin. Cancer Biol. 67(Pt 2), 61–79 (2020). https://doi.org/10.1016/j.semcancer.2020.04.003

Article  CAS  Google Scholar 

X. Hong, H.T. Nguyen, Q. Chen, R. Zhang, Z. Hagman, P.M. Voorhoeve, S.M. Cohen, Opposing activities of the Ras and Hippo pathways converge on regulation of YAP protein turnover. EMBO J. 33(21), 2447–2457 (2014). https://doi.org/10.15252/embj.201489385

Article  CAS  Google Scholar 

B. Cui, L. Gong, M. Chen, Y. Zhang, H. Yuan, J. Qin, D. Gao, CUL5-SOCS6 complex regulates mTORC2 function by targeting Sin1 for degradation. Cell Discov. 5, 52 (2019). https://doi.org/10.1038/s41421-019-0118-6

留言 (0)

沒有登入
gif