Human Umbilical Cord-Derived Mesenchymal Stem Cells Alleviate Psoriasis Through TNF-α/NF-κB/MMP13 Pathway

Greb, Jacqueline E., Ari M. Goldminz, James T. Elder, Mark G. Lebwohl, Dafna D. Gladman, Jashin J. Wu, Nehal N. Mehta, Andrew Y. Finlay, and Alice B. Gottlieb. 2016. Psoriasis. Nature Reviews Disease Primers 2. https://doi.org/10.1038/nrdp.2016.82.

Griffiths, Christopher E.M., April W. Armstrong, Johann E. Gudjonsson, and Jonathan N.W.N. Barker. 2021. Psoriasis. The Lancet. Berlin, Verlag: Elsevier. https://doi.org/10.1016/S0140-6736(20)32549-6.

Kaushik, Shivani B., and Mark G. Lebwohl. 2019. Psoriasis: Which therapy for which patient: Psoriasis comorbidities and preferred systemic agents. Journal of the American Academy of Dermatology. Mosby Inc. https://doi.org/10.1016/j.jaad.2018.06.057.

Nestle, Frank O, Daniel H Kaplan, and Jonathan Barker. 2009. Mechanism of disease: Psoriasis. The New England Journal of Medicine 361.

Alwan, Wisam, and Frank O. Nestle. 2015. Pathogenesis and treatment of psoriasis: Exploiting pathophysiological pathways for precision medicine. Clinical and Experimental Rheumatology 33.

Quesada, Jorge R., and Jordan U. Gutterman. 1986. Psoriasis and Alpha-Interferon. The Lancet 327. https://doi.org/10.1016/S0140-6736(86)91502-3.

Kamata, Masahiro, and Yayoi Tada. 2020. Efficacy and safety of biologics for psoriasis and psoriatic arthritis and their impact on comorbidities: A literature review. International Journal of Molecular Sciences. https://doi.org/10.3390/ijms21051690.

Article  Google Scholar 

Guinard, E., C. Bulai Livideanu, H. Barthélémy, M. Viguier, Z. Reguiai, M. A. Richard, D. Jullien, et al. 2016. Active tuberculosis in psoriasis patients treated with TNF antagonists: a French nationwide retrospective study. Journal of the European Academy of Dermatology and Venereology 30. https://doi.org/10.1111/jdv.13633.

Fowler, E., R.I. Ghamrawi, N. Ghiam, W. Liao, and J.J. Wu. 2020. Risk of tuberculosis reactivation during interleukin-17 inhibitor therapy for psoriasis: A systematic review. Journal of the European Academy of Dermatology and Venereology. https://doi.org/10.1111/jdv.16254.

Article  Google Scholar 

Nogueira, M., R.B. Warren, and T. Torres. 2021. Risk of tuberculosis reactivation with interleukin (IL)-17 and IL-23 inhibitors in psoriasis – time for a paradigm change. Journal of the European Academy of Dermatology and Venereology. https://doi.org/10.1111/jdv.16866.

Article  Google Scholar 

Tropel, Philippe, Nadine Platet, Jean-Claude Platel, Danièle Noël, Mireille Albrieux, Alim-Louis Benabid, and François Berger. 2006. Functional neuronal differentiation of bone marrow-derived mesenchymal stem cells. Stem Cells 24. https://doi.org/10.1634/stemcells.2005-0636.

Hu, Lifang, Chong Yin, Fan Zhao, Arshad Ali, Jianhua Ma, and Airong Qian. 2018. Mesenchymal stem cells: Cell fate decision to osteoblast or adipocyte and application in osteoporosis treatment. International Journal of Molecular Sciences. https://doi.org/10.3390/ijms19020360.

Article  Google Scholar 

Mackay, Alastair M., Stephen C. Beck, J. Mary Murphy, Frank P. Barry, Clinton O. Chichester, and Mark F. Pittenger. 1998. Chondrogenic differentiation of cultured human mesenchymal stem cells from marrow. Tissue Engineering 4. https://doi.org/10.1089/ten.1998.4.415.

Ferrari, Giuliana, Gabriella Cusella-De Angelis, Marcello Coletta, Egle Paolucci, Anna Stornaiuolo, Giulio Cossu, and Fulvio Mavilio. 1998. Muscle regeneration by bone marrow-derived myogenic progenitors. Science 279. https://doi.org/10.1126/science.279.5356.1528.

Romanov, Yuri A., Veronika A. Svintsitskaya, and Vladimir N. Smirnov. 2003. Searching for alternative sources of postnatal human mesenchymal stem cells: Candidate MSC-like cells from umbilical cord. Stem Cells 21. https://doi.org/10.1634/stemcells.21-1-105.

Steigman, Shaun A., and Dario O. Fauza. 2007. Isolation of mesenchymal stem cells from amniotic fluid and placenta. Current Protocols in Stem Cell Biology Chapter 1. https://doi.org/10.1002/9780470151808.sc01e02s1.

Ma, S., N. Xie, W. Li, B. Yuan, Y. Shi, and Y. Wang. 2014. Immunobiology of mesenchymal stem cells. Cell Death and Differentiation 21: 216–225. https://doi.org/10.1038/cdd.2013.158.

Article  CAS  Google Scholar 

Wagoner, Zachary W., and Weian Zhao. 2021. Therapeutic implications of transplanted-cell death. Nature Biomedical Engineering 5: 379–384. US: Springer.  https://doi.org/10.1038/s41551-021-00729-6.

Németh, Krisztián, Asada Leelahavanichkul, Peter S.T.. Yuen, Balázs Mayer, Alissa Parmelee, Kent Doi, Pamela G. Robey, et al. 2009. Bone marrow stromal cells attenuate sepsis via prostaglandin E 2-dependent reprogramming of host macrophages to increase their interleukin-10 production. Nature Medicine 15: 42–49. https://doi.org/10.1038/nm.1905.

Article  CAS  Google Scholar 

Chen, Maosheng, Jing Peng, Qi Xie, Na Xiao, Xian Su, Hua Mei, Yeping Lu, et al. 2019. Mesenchymal stem cells alleviate moderate-to-severe psoriasis by reducing the production of type i interferon (IFN-I) by plasmacytoid dendritic cells (pDCs). Stem Cells International 2019. https://doi.org/10.1155/2019/6961052.

Yao, Danni, Shuyan Ye, Ziyang He, Yu Huang, Jingwen Deng, Zehuai Wen, Xinsheng Chen, et al. 2021. Adipose-derived mesenchymal stem cells (AD-MSCs) in the treatment for psoriasis: results of a single-arm pilot trial. Annals of Translational Medicine 9:1653–1653. AME: Publishing Company. https://doi.org/10.21037/atm-21-5028.

Lee, Yun Sang, Shyam Kishor Sah, Ji Hyun Lee, Kwang Won Seo, Kyung Sun Kang, and Tae Yoon Kim. 2017. Human umbilical cord blood-derived mesenchymal stem cells ameliorate psoriasis-like skin inflammation in mice. Biochemistry and Biophysics Reports 9: 281–288. B.V.: Elsevier. https://doi.org/10.1016/j.bbrep.2016.10.002.

Lwin, S.M., J.A. Snowden, and C.E.M. Griffiths. 2021. The promise and challenges of cell therapy for psoriasis. British Journal of Dermatology. John Wiley and Sons Inc. https://doi.org/10.1111/bjd.20517.

de Witte, Samantha F.H.., Franka Luk, Jesus M. Sierra, Madhu Gargesha Parraga, Ana Merino, Sander S. Korevaar, Anusha S. Shankar, et al. 2018. Immunomodulation by therapeutic mesenchymal stromal cells (MSC) is triggered through phagocytosis of MSC by monocytic cells. Stem Cells 36: 602–615. https://doi.org/10.1002/stem.2779.

Article  CAS  Google Scholar 

Vasandan, Anoop Babu, Sowmya Jahnavi, Chandanala Shashank, Priya Prasad, Anujith Kumar, and S. Jyothi Prasanna. 2016. Human mesenchymal stem cells program macrophage plasticity by altering their metabolic status via a PGE 2 -dependent mechanism. Scientific Reports 6. https://doi.org/10.1038/srep38308.

Howes, Joanna Marie, Dominique Bihan, David A. Slatter, Samir W. Hamaia, Len C. Packman, Vera Knauper, Robert Visse, and Richard W. Farndale. 2014. The recognition of collagen and triple-helical toolkit peptides by MMP-13: Sequence specificity for binding and cleavage. Journal of Biological Chemistry 289. https://doi.org/10.1074/jbc.M114.583443.

Hattori, Noriko, Satsuki Mochizuki, Kazuo Kishi, Tatsuo Nakajima, Hironari Takaishi, Jeanine D’Armiento, and Yasunori Okada. 2009. MMP-13 plays a role in keratinocyte migration, angiogenesis, and contraction in mouse skin wound healing. American Journal of Pathology 175. https://doi.org/10.2353/ajpath.2009.081080.

He, Yu Jie, Xu Liang, Xin Xin Zhang, Shan Shan Li, Yue Sun, and Tian Fang Li. 2021. PTH1–34 inhibited TNF-α expression and antagonized TNF-α-induced MMP13 expression in MIO mice. International Immunopharmacology 91. https://doi.org/10.1016/j.intimp.2020.107191.

Little, Christopher B., A. Barai, D. Burkhardt, S. M. Smith, A. J. Fosang, Z. Werb, M. Shah, and E. W. Thompson. 2009. Matrix metalloproteinase 13-deficient mice are resistant to osteoarthritic cartilage erosion but not chondrocyte hypertrophy or osteophyte development. Arthritis and Rheumatism 60. https://doi.org/10.1002/art.25002.

Zhang, Bin, Xuchen Cao, Yanxue Liu, Wenfeng Cao, Fei Zhang, Shiwu Zhang, Hongtao Li, et al. 2008. Tumor-derived Matrix Metalloproteinase-13 (MMP-13) correlates with poor prognoses of invasive breast cancer. BMC Cancer 8. https://doi.org/10.1186/1471-2407-8-83.

Diani, Marco, Silvia Perego, Veronica Sansoni, Lucrezia Bertino, Marta Gomarasca, Martina Faraldi, Paolo Daniele Maria Pigatto, et al. 2019. Differences in osteoimmunological biomarkers predictive of psoriatic arthritis among a large Italian cohort of psoriatic patients. International Journal of Molecular Sciences 20. https://doi.org/10.3390/ijms20225617.

Xi, Chan, Chuanxi Xiong, Huiping Wang, Yuanjun Liu, and Suju Luo. 2021. Combination of retinoids and narrow-band ultraviolet B inhibits matrix metalloproteinase 13 expression in HaCaT keratinocytes and a mouse model of psoriasis. Scientific Reports 11. https://doi.org/10.1038/s41598-021-92599-w.

Kim, Ji Yon, Yu. Minhwa Park, Hee Kim, Kyung Ha Ryu, Kyung Ho Lee, Kyung Ah Cho, and So Youn Woo. 2018. Tonsil-derived mesenchymal stem cells (T-MSCs) prevent Th17-mediated autoimmune response via regulation of the programmed death-1/programmed death ligand-1 (PD-1/PD-L1) pathway. Journal of Tissue Engineering and Regenerative Medicine 12: e1022–e1033. https://doi.org/10.1002/term.2423.

Article  CAS  Google Scholar 

Imai, Yasutomo, Kenichi Yamahara, Akiko Hamada, Yoshihiro Fujimori, and Kiyofumi Yamanishi. 2019. Human amnion-derived mesenchymal stem cells ameliorate imiquimod-induced psoriasiform dermatitis in mice. Journal of Dermatology 46: 276–278. https://doi.org/10.1111/1346-8138.14768.

Article  CAS  Google Scholar 

Haider, Asifa S., Jules Cohen, Ji Fei, Lisa C. Zaba, Irma Cardinale, Kikuchi Toyoko, Jurg Ott, and James G. Krueger. 2008. Insights into gene modulation by therapeutic TNF and IFNγ antibodies: TNF regulates IFNγ production by T cells and TNF-regulated genes linked to psoriasis transcriptome. Journal of Investigative Dermatology 128: 655–666. Nature Publishing Group. https://doi.org/10.1038/sj.jid.5701064.

Saxton, Robert A., Naotaka Tsutsumi, Leon L. Su, Gita C. Abhiraman, Kritika Mohan, Lukas T. Henneberg, Nanda G. Aduri, Cornelius Gati, and K. Christopher Garcia. 2021. Structure-based decoupling of the pro- And anti-inflammatory functions of interleukin-10. Science 371. https://doi.org/10.1126/science.abc8433.

Wikan, Nitwara, Phateep Hankittichai, Phatarawat Thaklaewphan, Saranyapin Potikanond, and Wutigri Nimlamool. 2022. Oxyresveratrol inhibits TNF-α-stimulated cell proliferation in human immortalized keratinocytes (HaCaT) by suppressing AKT activation. Pharmaceutics 14. https://doi.org/10.3390/pharmaceutics14010063.

Patel, Arti B., Irene Tsilioni, Zuyi Weng, and Theoharis C. Theoharides. 2018. TNF stimulates IL-6, CXCL8 and VEGF secretion from human keratinocytes via activation of mTOR, inhibited by tetramethoxyluteolin. Experimental Dermatology 27. https://doi.org/10.1111/exd.13461.

Hawkes, Jason E., Tom C. Chan, and James G. Krueger. 2017. Psoriasis pathogenesis and the development of novel targeted immune therapies. Journal of Allergy and Clinical Immunology. https://doi.org/10.1016/j.jaci.2017.07.004.

Article  Google Scholar 

Yan, Sha, Zhenyao Xu, Fangzhou Lou, Lingyun Zhang, Fang Ke, Jing Bai, Zhaoyuan Liu, et al. 2015. NF-κB-induced microRNA-31 promotes epidermal hyperplasia by repressing protein phosphatase 6 in psoriasis. Nature Communications 6. https://doi.org/10.1038/ncomms8652.

Rebholz, Bernd, Ingo Haase, Birgit Eckelt, Stephan Paxian, Michael J. Flaig, Kamran Ghoreschi, Sergei A. Nedospasov, et al. 2007. Crosstalk between keratinocytes and adaptive immune cells in an IκBα protein-mediated inflammatory disease of the skin. Immunity 27. https://doi.org/10.1016/j.immuni.2007.05.024.

Kessenbrock, Kai, Vicki Plaks, and Zena Werb. 2010. Matrix metalloproteinases: Regulators of the tumor microenvironment. Cell. https://doi.org/10.1016/j.cell.2010.03.015.

Article  Google Scholar 

Mezentsev, Alexandre, Alexander Nikolaev, and Sergey Bruskin. 2014. Matrix metalloproteinases and their role in psoriasis. Gene. https://doi.org/10.1016/j.gene.2014.01.068.

Article  Google Scholar 

Suomela, S., A.L. Kariniemi, E. Snellman, and Ulpu Saarialho-Kere. 2001. Metalloelastase (MMP-12) and 92-kDa gelatinase (MMP-9) as well as their inhibitors, TIMP-1 and -3, are expressed in psoriatic lesions. Experimental Dermatology 10. https://doi.org/10.1034/j.1600-0625.2001.010003175.x.

Shi, Guang Hui, Yi Fei Cheng, Yang Zhang, Rui Guo, Shenglei Li, and Xin Hong. 2021. Long non-coding RNA LINC00511/miR-150/MMP13 axis promotes breast cancer proliferation, migration and invasion. Biochimica et Biophysica Acta - Molecular Basis of Disease 1867. https://doi.org/10.1016/j.bbadis.2020.165957

留言 (0)

沒有登入
gif