MRI texture-based machine learning models for the evaluation of renal function on different segmentations: a proof-of-concept study

Collaboration GBDCKD (2020) Global, regional, and national burden of chronic kidney disease, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet 395:709–733. https://doi.org/10.1016/S0140-6736(20)30045-3

Article  Google Scholar 

Webster AC, Nagler EV, Morton RL, Masson P (2017) Chronic kidney disease. Lancet 389:1238–1252. https://doi.org/10.1016/S0140-6736(16)32064-5

Article  Google Scholar 

Gigante A, Proietti M, Petrillo E, Mannucci PM, Nobili A, Muscaritoli M (2021) Renal function, cardiovascular diseases, appropriateness of drug prescription and outcomes in hospitalized older patients. Drugs Aging 38:1097–1105. https://doi.org/10.1007/s40266-021-00903-0

Article  CAS  Google Scholar 

Kawakami T, Mimura I, Shoji K, Tanaka T, Nangaku M (2014) Hypoxia and fibrosis in chronic kidney disease: crossing at pericytes. Kidney Int Suppl 4:107–112. https://doi.org/10.1038/kisup.2014.20

Article  CAS  Google Scholar 

Eckerbom P, Hansell P, Cox E et al (2019) Multiparametric assessment of renal physiology in healthy volunteers using noninvasive magnetic resonance imaging. Am J Physiol Renal Physiol 316:F693–F702. https://doi.org/10.1152/ajprenal.00486.2018

Article  CAS  Google Scholar 

Mao W, Zhou J, Zeng M et al (2018) Intravoxel incoherent motion diffusion-weighted imaging for the assessment of renal fibrosis of chronic kidney disease: a preliminary study. Magn Reson Imaging 47:118–124. https://doi.org/10.1016/j.mri.2017.12.010

Article  Google Scholar 

Inoue T, Kozawa E, Okada H et al (2011) Noninvasive evaluation of kidney hypoxia and fibrosis using magnetic resonance imaging. J Am Soc Nephrol 22:1429–1434. https://doi.org/10.1681/ASN.2010111143

Article  Google Scholar 

Khatir DS, Pedersen M, Jespersen B, Buus NH (2015) Evaluation of renal blood flow and oxygenation in CKD using magnetic resonance imaging. Am J Kidney Dis 66:402–411. https://doi.org/10.1053/j.ajkd.2014.11.022

Article  Google Scholar 

Mora-Gutierrez JM, Garcia-Fernandez N, Slon Roblero MF et al (2017) Arterial spin labeling MRI is able to detect early hemodynamic changes in diabetic nephropathy. J Magn Reson Imaging 46:1810–1817. https://doi.org/10.1002/jmri.25717

Article  Google Scholar 

Wang YC, Feng Y, Lu CQ, Ju S (2018) Renal fat fraction and diffusion tensor imaging in patients with early-stage diabetic nephropathy. Eur Radiol 28:3326–3334. https://doi.org/10.1007/s00330-017-5298-6

Article  Google Scholar 

Zhang H, Wang P, Shi D et al (2022) Capability of intravoxel incoherent motion and diffusion tensor imaging to detect early kidney injury in type 2 diabetes. Eur Radiol. https://doi.org/10.1007/s00330-021-08415-6

Article  Google Scholar 

Lambin P, Rios-Velazquez E, Leijenaar R et al (2012) Radiomics: extracting more information from medical images using advanced feature analysis. Eur J Cancer 48:441–446. https://doi.org/10.1016/j.ejca.2011.11.036

Article  Google Scholar 

Gillies RJ, Kinahan PE, Hricak H (2016) Radiomics: images are more than pictures, they are data. Radiology 278:563–577. https://doi.org/10.1148/radiol.2015151169

Article  Google Scholar 

Lubner MG, Pickhardt PJ (2018) Multidetector computed tomography for retrospective, noninvasive staging of liver fibrosis. Gastroenterol Clin North Am 47:569–584. https://doi.org/10.1016/j.gtc.2018.04.012

Article  Google Scholar 

Zhang X, Gao X, Liu BJ et al (2015) Effective staging of fibrosis by the selected texture features of liver: which one is better, CT or MR imaging? Comput Med Imaging Graph 46(Pt 2):227–236. https://doi.org/10.1016/j.compmedimag.2015.09.003

Article  Google Scholar 

Kuo CC, Chang CM, Liu KT et al (2019) Automation of the kidney function prediction and classification through ultrasound-based kidney imaging using deep learning. NPJ Digit Med 2:29. https://doi.org/10.1038/s41746-019-0104-2

Article  Google Scholar 

Huang S, Shi K, Zhang Y et al (2022) Texture analysis of T2-weighted cardiovascular magnetic resonance imaging to discriminate between cardiac amyloidosis and hypertrophic cardiomyopathy. BMC Cardiovasc Disord 22:235. https://doi.org/10.1186/s12872-022-02671-0

Article  CAS  Google Scholar 

Yu B, Huang C, Fan X et al (2022) Application of MR imaging features in differentiation of renal changes in patients with stage III type 2 diabetic nephropathy and normal subjects. Front Endocrinol (Lausanne) 13:846407. https://doi.org/10.3389/fendo.2022.846407

Article  Google Scholar 

Grzywińska M, Jankowska M, Banach-Ambroziak E, Szurowska E, Dębska-Ślizień A (2020) Computation of the texture features on T2-weighted images as a novel method to assess the function of the transplanted kidney: primary research. Transplant Proc 52:2062–2066. https://doi.org/10.1016/j.transproceed.2020.02.084

Article  Google Scholar 

Ding J, Xing Z, Jiang Z et al (2019) Evaluation of renal dysfunction using texture analysis based on DWI, BOLD, and susceptibility-weighted imaging. Eur Radiol 29:2293–2301. https://doi.org/10.1007/s00330-018-5911-3

Article  Google Scholar 

Deng Y, Yang BR, Luo JW, Du GX, Luo LP (2020) DTI-based radiomics signature for the detection of early diabetic kidney damage. Abdom Radiol (NY) 45:2526–2531. https://doi.org/10.1007/s00261-020-02576-6

Article  Google Scholar 

Berchtold L, Friedli I, Crowe LA et al (2020) Validation of the corticomedullary difference in magnetic resonance imaging-derived apparent diffusion coefficient for kidney fibrosis detection: a cross-sectional study. Nephrol Dial Transplant 35:937–945. https://doi.org/10.1093/ndt/gfy389

Article  Google Scholar 

Lin HY, Lee YL, Lin KD et al (2017) Association of renal elasticity and renal function progression in patients with chronic kidney disease evaluated by real-time ultrasound elastography. Sci Rep 7:43303. https://doi.org/10.1038/srep43303

Article  CAS  Google Scholar 

Chunmei X, Mei H, Yan Z, Haiying W (2019) Diagnostic method of liver cirrhosis based on MR image texture feature extraction and classification algorithm. J Med Syst 44:11. https://doi.org/10.1007/s10916-019-1508-x

Article  Google Scholar 

Schawkat K, Ciritsis A, von Ulmenstein S et al (2020) Diagnostic accuracy of texture analysis and machine learning for quantification of liver fibrosis in MRI: correlation with MR elastography and histopathology. Eur Radiol 30:4675–4685. https://doi.org/10.1007/s00330-020-06831-8

Article  Google Scholar 

Niles DJ, Artz NS, Djamali A, Sadowski EA, Grist TM, Fain SB (2016) Longitudinal assessment of renal perfusion and oxygenation in transplant donor-recipient pairs using arterial spin labeling and blood oxygen level-dependent magnetic resonance imaging. Invest Radiol 51:113–120. https://doi.org/10.1097/RLI.0000000000000210

Article  CAS  Google Scholar 

Sigmund EE, Vivier PH, Sui D et al (2012) Intravoxel incoherent motion and diffusion-tensor imaging in renal tissue under hydration and furosemide flow challenges. Radiology 263:758–769. https://doi.org/10.1148/radiol.12111327

Article  Google Scholar 

Milani B, Ansaloni A, Sousa-Guimaraes S et al (2017) Reduction of cortical oxygenation in chronic kidney disease: evidence obtained with a new analysis method of blood oxygenation level-dependent magnetic resonance imaging. Nephrol Dial Transplant Off Publ Eur Dial Transpl Assoc Eur Renal Assoc 32:2097–2105. https://doi.org/10.1093/ndt/gfw362

Article  CAS  Google Scholar 

Pruijm M, Milani B, Pivin E et al (2018) Reduced cortical oxygenation predicts a progressive decline of renal function in patients with chronic kidney disease. Kidney Int 93:932–940. https://doi.org/10.1016/j.kint.2017.10.020

Article  Google Scholar 

Chaddad A, Daniel P, Desrosiers C, Toews M, Abdulkarim B (2019) Novel radiomic features based on joint intensity matrices for predicting glioblastoma patient survival time. IEEE J Biomed Health Inform 23:795–804. https://doi.org/10.1109/JBHI.2018.2825027

Article  Google Scholar 

Xie C, Yang P, Zhang X et al (2019) Sub-region based radiomics analysis for survival prediction in oesophageal tumours treated by definitive concurrent chemoradiotherapy. EBioMedicine 44:289–297. https://doi.org/10.1016/j.ebiom.2019.05.023

Article  Google Scholar 

Xu H, Lv W, Feng H et al (2020) Subregional radiomics analysis of PET/CT imaging with intratumor partitioning: application to prognosis for nasopharyngeal carcinoma. Mol Imaging Biol 22:1414–1426. https://doi.org/10.1007/s11307-019-01439-x

Article  CAS  Google Scholar 

留言 (0)

沒有登入
gif