“Digital biomarkers” in preclinical heart failure models — a further step towards improved translational research

Lund LH, Savarese G (2017) Global public health burden of heart failure. Card Fail Rev 03(01):7. https://doi.org/10.15420/cfr.2016:25:2

Ambrosy AP, Fonarow GC, Butler J, Chioncel O, Greene SJ, Vaduganathan M et al (2014) The global health and economic burden of hospitalizations for heart failure: lessons learned from hospitalized heart failure registries. J Am Coll Cardiol 63(12):1123–1133. https://doi.org/10.1016/j.jacc.2013.11.053

Article  Google Scholar 

Danielsen R, Thorgeirsson G, Einarsson H, Olafsson O, Aspelund T, Harris TB et al (2017) Prevalence of heart failure in the elderly and future projections: the AGES-Reykjavik study. Scand Cardiovasc J: SCJ 51(4):183–189. https://doi.org/10.1080/14017431.2017.1311023

Article  Google Scholar 

Bowen RES, Graetz TJ, Emmert DA, Avidan MS (2020) Statistics of heart failure and mechanical circulatory support in 2020. Ann Trans Med 8(13):827. https://doi.org/10.21037/atm-20-1127

Azad N, Lemay G (2014) Management of chronic heart failure in the older population. J Geriatr Cardiol: JGC 11(4):329–37. https://doi.org/10.11909/j.issn.1671-5411.2014.04.008

Berggren R, Moller M, Moss R, Poda P, Smietana K (2012) Outlook for the next 5 years in drug innovation. Nat Rev Drug Discovery 11(6):435–436. https://doi.org/10.1038/nrd3744

Article  CAS  Google Scholar 

Jackson N, Atar D, Borentain M, Breithardt G, van Eickels M, Endres M et al (2016) Improving clinical trials for cardiovascular diseases: a position paper from the cardiovascular round table of the European society of cardiology. Eur Heart J 37(9):747–754. https://doi.org/10.1093/eurheartj/ehv213

Article  Google Scholar 

Rubio DM, Schoenbaum EE, Lee LS, Schteingart DE, Marantz PR, Anderson KE et al (2010) Defining translational research: implications for training. Acad Med: J Assoc Am Med Coll 85(3):470–475. https://doi.org/10.1097/ACM.0b013e3181ccd618

Article  Google Scholar 

Schafer S, Kolkhof P (2008) Failure is an option: learning from unsuccessful proof-of-concept trials. Drug Discov Today 13(21–22):913–916. https://doi.org/10.1016/j.drudis.2008.03.026

Article  Google Scholar 

Wehling M (2009) Assessing the translatability of drug projects: what needs to be scored to predict success? Nat Rev Drug Discovery 8(7):541–546. https://doi.org/10.1038/nrd2898

Article  CAS  Google Scholar 

Riehle C, Bauersachs J (2019) Small animal models of heart failure. Cardiovasc Res 115(13):1838–1849. https://doi.org/10.1093/cvr/cvz161

Article  CAS  Google Scholar 

Schuttler D, Bapat A, Kaab S, Lee K, Tomsits P, Clauss S et al (2020) Animal models of atrial fibrillation. Circ Res 127(1):91–110. https://doi.org/10.1161/CIRCRESAHA.120.316366

Article  CAS  Google Scholar 

Houser SR, Margulies KB, Murphy AM, Spinale FG, Francis GS, Prabhu SD et al (2012) Animal models of heart failure: a scientific statement from the American heart association. Circ Res 111(1):131–150. https://doi.org/10.1161/RES.0b013e3182582523

Article  CAS  Google Scholar 

Arrowsmith J (2011) Trial watch: Phase II failures: 2008–2010. Nat Rev Drug Discov 10(5):328–329. https://doi.org/10.1038/nrd3439

Article  CAS  Google Scholar 

Choy JS, Zhang ZD, Pitsillides K, Sosa M, Kassab GS (2014) Longitudinal hemodynamic measurements in swine heart failure using a fully implantable telemetry system. PLoS ONE 9(8):e103331. https://doi.org/10.1371/journal.pone.0103331

Article  CAS  Google Scholar 

Vatner SF, Braunwald E (1975) Cardiovascular control mechanisms in the conscious state. N Engl J Med 293(19):970–976. https://doi.org/10.1056/NEJM197511062931906

Article  CAS  Google Scholar 

Topol EJ, Steinhubl SR, Torkamani A (2015) Digital medical tools and sensors. Jama 313(4):353–354. https://doi.org/10.1001/jama.2014.17125

Article  CAS  Google Scholar 

Bhavnani SP, Narula J, Sengupta PP (2016) Mobile technology and the digitization of healthcare. Eur Heart J 37(18):1428–1438. https://doi.org/10.1093/eurheartj/ehv770

Article  Google Scholar 

Kramer F, Dinh W (2016) Molecular and digital biomarker supported decision making in clinical studies in cardiovascular indications. Arch Pharm 349(6):399–409. https://doi.org/10.1002/ardp.201600055

Article  CAS  Google Scholar 

Mohan RC, Heywood JT, Small RS (2017) Remote monitoring in heart failure: the current state. Curr Treat Options Cardiovasc Med 19(3):22. https://doi.org/10.1007/s11936-017-0519-5

Article  Google Scholar 

Conway A, Inglis SC, Clark RA (2014) Effective technologies for noninvasive remote monitoring in heart failure. Telemed J E-Health 20(6):531–538. https://doi.org/10.1089/tmj.2013.0267

Article  Google Scholar 

Michard F (2017) A sneak peek into digital innovations and wearable sensors for cardiac monitoring. J Clin Monit Comput 31(2):253–259. https://doi.org/10.1007/s10877-016-9925-6

Article  Google Scholar 

Boehme P, Wienand P, Herrmann M, Truebel H, Mondritzki T (2017) New digital adherence devices could prevent millions of strokes from atrial fibrillation by the end of the next century. Med Hypotheses 108:46–50. https://doi.org/10.1016/j.mehy.2017.07.034

Article  Google Scholar 

Desai AS, Bhimaraj A, Bharmi R, Jermyn R, Bhatt K, Shavelle D et al (2017) Ambulatory hemodynamic monitoring reduces heart failure hospitalizations in “real-world” clinical practice. J Am Coll Cardiol 69(19):2357–2365. https://doi.org/10.1016/j.jacc.2017.03.009

Article  Google Scholar 

Bain EE, Shafner L, Walling DP, Othman AA, Chuang-Stein C, Hinkle J et al (2017) Use of a novel artificial intelligence platform on mobile devices to assess dosing compliance in a phase 2 clinical trial in subjects with schizophrenia. JMIR Mhealth Uhealth 5(2):e18. https://doi.org/10.2196/mhealth.7030

Article  Google Scholar 

Valente M, Zwaan E, Wit M, Kimman GP, Umans V (2010) Effects of a digital clinical pathway for elective electrocardioversion for atrial fibrillation on quality of care. Crit Pathw Cardiol 9(4):207–211. https://doi.org/10.1097/HPC.0b013e3181f8408a

Article  Google Scholar 

Cowie MR, Simon M, Klein L, Thokala P (2017) The cost-effectiveness of real-time pulmonary artery pressure monitoring in heart failure patients: a European perspective. Eur J Heart Fail 19(5):661–669. https://doi.org/10.1002/ejhf.747

Article  Google Scholar 

Givertz MM, Stevenson LW, Costanzo MR, Bourge RC, Bauman JG, Ginn G et al (2017) Pulmonary artery pressure-guided management of patients with heart failure and reduced ejection fraction. J Am Coll Cardiol 70(15):1875–1886. https://doi.org/10.1016/j.jacc.2017.08.010

Article  Google Scholar 

Gauvin DV, Tilley LP, Smith FW Jr, Baird TJ (2006) Electrocardiogram, hemodynamics, and core body temperatures of the normal freely moving laboratory beagle dog by remote radiotelemetry. J Pharmacol Toxicol Methods 53(2):128–139. https://doi.org/10.1016/j.vascn.2005.11.004

Article  CAS  Google Scholar 

Cesarovic N, Jirkof P, Rettich A, Arras M (2011) Implantation of radiotelemetry transmitters yielding data on ECG, heart rate, core body temperature and activity in free-moving laboratory mice. J Vis Exp (57). https://doi.org/10.3791/3260

Kramer K, Kinter LB (2003) Evaluation and applications of radiotelemetry in small laboratory animals. Physiol Genomics 13(3):197–205. https://doi.org/10.1152/physiolgenomics.00164.2002

Article  Google Scholar 

Mondritzki T, Mai TA, Vogel J, Pook E, Wasnaire P, Schmeck C et al (2020) Cardiac output improvement by pecavaptan: a novel dual-acting vasopressin V1a/V2 receptor antagonist in experimental heart failure. Eur J Heart Fail. https://doi.org/10.1002/ejhf.2001

Article  Google Scholar 

Liu Z, Finet JE, Wolfram JA, Anderson ME, Ai X, Donahue JK (2019) Calcium/calmodulin-dependent protein kinase II causes atrial structural remodeling associated with atrial fibrillation and heart failure. Heart Rhythm 16(7):1080–1088. https://doi.org/10.1016/j.hrthm.2019.01.013

Article  Google Scholar 

Perl L, Soifer E, Bartunek J, Erdheim D, Köhler F, Abraham WT et al (2019) A novel wireless left atrial pressure monitoring system for patients with heart failure, first ex-vivo and animal experience. J Cardiovasc Transl Res 12(4):290–298. https://doi.org/10.1007/s12265-018-9856-3

Article  Google Scholar 

Mondritzki T, Boehme P, White J, Park JW, Hoffmann J, Vogel J et al (2018) Remote left ventricular hemodynamic monitoring using a novel intracardiac sensor. Circ-Cardiovasc Inte 11(5):e006258. https://doi.org/10.1161/CIRCINTERVENTIONS.117.006258

Malinowski M, Proudfoot AG, Langholz D, Eberhart L, Brown M, Schubert H et al (2017) Large animal model of functional tricuspid regurgitation in pacing induced end-stage heart failure. Interact Cardiovasc Thorac Surg 24(6):905–910. https://doi.org/10.1093/icvts/ivx012

Article  Google Scholar 

Regan CP, Stump GL, Detwiler TJ, Chen L, Regan HK, Gilberto DB et al (2016) Characterization of an investigative safety pharmacology model to assess comprehensive cardiac function and structure in chronically instrumented conscious beagle dogs. J Pharmacol Toxicol Methods 81:107–114. https://doi.org/10.1016/j.vascn.2016.05.002

Article  CAS  Google Scholar 

Schwarzl M, Alogna A, Zweiker D, Verderber J, Huber S, Manninger M et al (2016) A porcine model of early atrial fibrillation using a custom-built, radio transmission-controlled pacemaker. J Electrocardiol 49(2):124–131. https://doi.org/10.1016/j.jelectrocard.2015.12.012

Article  Google Scholar 

Ewart L, Aylott M, Deurinck M, Engwall M, Gallacher DJ, Geys H et al (2014) The concordance between nonclinical and phase I clinical cardiovascular assessment from a cross-company data sharing initiative. Toxicol Sci 142(2):427–435. https://doi.org/10.1093/toxsci/kfu198

Article  CAS  Google Scholar 

Caruso A, Frances N, Meille C, Greiter-Wilke A, Hillebrecht A, Lave T (2014) Translational PK/PD modeling for cardiovascular safety assessment of drug candidates: methods and examples in drug development. J Pharmacol Toxicol Methods 70(1):73–85. https://doi.org/10.1016/j.vascn.2014.05.004

Article  CAS  Google Scholar 

Asgari SS, Bonde P (2014) Implantable physiologic controller for left ventricular assist devices with telemetry capability. J Thorac Cardiovasc Surg 147(1):192–202. https://doi.org/10.1016/j.jtcvs.2013.09.012

Article  Google Scholar 

Amir O, Rappaport D, Zafrir B, Abraham WT (2013) A novel approach to monitoring pulmonary congestion in heart failure: initial animal and clinical experiences using remote dielectric sensing technology. Congest Heart Fail 19(3):149–155. https://doi.org/10.1111/chf.12021

Article  Google Scholar 

Mondritzki T, Steinbach SML, Boehme P, Hoffmann J, Kullmann M, Schock-Kusch D et al (2018) Transcutaneous glomerular filtration rate measurement in a canine animal model of chronic kidney disease. J Pharmacol Toxicol Methods 90:7–12. https://doi.org/10.1016/j.vascn.2017.10.009

Article  CAS  Google Scholar 

Huetteman DA, Bogie H (2009) Direct blood pressure monitoring in laboratory rodents via implantable radio telemetry. Methods Mol Biol 573:57–73. https://doi.org/10.1007/978-1-60761-247-6_4

Article  Google Scholar 

Kvetnansky R, Sun CL, Lake CR, Thoa N, Torda T, Kopin IJ (1978) Effect of handling and forced immobilization on rat plasma levels of epinephrine, norepinephrine, and dopamine-beta-hydroxylase. Endocrinology 103(5):1868–1874. https://doi.org/10.1210/endo-103-5-1868

Article  CAS  Google Scholar 

Lourenco AP, Leite-Moreira AF, Balligand JL, Bauersachs J, Dawson D, de Boer RA et al (2018) An integrative translational approach to study heart failure with preserved ejection fraction: a position paper from the working group on myocardial function of the European society of cardiology. Eur J Heart Fail 20(2):216–227. https://doi.org/10.1002/ejhf.1059

Article  Google Scholar 

Liu LC, Dorhout B, van der Meer P, Teerlink JR, Voors AA (2016) Omecamtiv mecarbil: a new cardiac myosin activator for the treatment of heart failure. Expert Opin Investig Drugs 25(1):117–127. https://doi.org/10.1517/13543784.2016.1123248

留言 (0)

沒有登入
gif