Systemic sclerosis gastrointestinal dysmotility: risk factors, pathophysiology, diagnosis and management

Steen, V. D. & Medsger, T. A. Severe organ involvement in systemic sclerosis with diffuse scleroderma. Arthritis Rheum. 43, 2437–2444 (2000).

CAS  Google Scholar 

Richard, N. et al. Severe gastrointestinal disease in very early systemic sclerosis is associated with early mortality. Rheumatology 58, 636–644 (2019).

Google Scholar 

Gyger, G. & Baron, M. Systemic sclerosis: gastrointestinal disease and its management. Rheum. Dis. Clin. North. Am. 41, 459–473 (2015).

Google Scholar 

Kaniecki, T., Abdi, T. & McMahan, Z. H. A practical approach to the evaluation and management of gastrointestinal symptoms in patients with systemic sclerosis. Best Pract. Res. Clin. Rheumatol. 35, 101666 (2021).

Google Scholar 

Jaovisidha, K., Csuka, M. E., Almagro, U. A. & Soergel, K. H. Severe gastrointestinal involvement in systemic sclerosis: report of five cases and review of the literature. Semin. Arthritis Rheum. 34, 689–702 (2005).

Google Scholar 

McMahan, Z. H. et al. Relationship between gastrointestinal transit, Medsger gastrointestinal severity, and University of California-Los Angeles scleroderma clinical trial consortium gastrointestinal tract 2.0 symptoms in patients with systemic sclerosis. Arthritis Care Res. 74, 442–450 (2022).

Google Scholar 

Kawaguchi, Y. et al. Muscarinic-3 acetylcholine receptor autoantibody in patients with systemic sclerosis: contribution to severe gastrointestinal tract dysmotility. Ann. Rheum. Dis. 68, 710–714 (2009).

CAS  Google Scholar 

Lock, G. et al. Association of autonomic nervous dysfunction and esophageal dysmotility in systemic sclerosis. J. Rheumatol. 25, 1330–1335 (1998).

CAS  Google Scholar 

Adler, B. L., Russell, J. W., Hummers, L. K. & McMahan, Z. H. Symptoms of autonomic dysfunction in systemic sclerosis assessed by the COMPASS-31 questionnaire. J. Rheumatol. 45, 1145–1152 (2018).

Google Scholar 

Furness, J. B., Callaghan, B. P., Rivera, L. R. & Cho, H. J. The enteric nervous system and gastrointestinal innervation: integrated local and central control. Adv. Exp. Med. Biol. 817, 39–71 (2014).

Google Scholar 

Kulkarni, S. et al. Adult enteric nervous system in health is maintained by a dynamic balance between neuronal apoptosis and neurogenesis. Proc. Natl Acad. Sci. USA 114, E3709–E3718 (2017).

CAS  Google Scholar 

Kulkarni, S. et al. Advances in enteric neurobiology: the “brain” in the gut in health and disease. J. Neurosci. 38, 9346–9354 (2018).

CAS  Google Scholar 

Kulkarni, S. & Pasricha, P. J. Decoding the enteric nervous system: the beginning of our understanding of enteric neuromuscular disorders. Gastroenterology 160, 651–652 (2021).

Google Scholar 

McMahan, Z. H. et al. Anti-RNPC-3 (U11/U12) antibodies in systemic sclerosis in patients with moderate-to-severe gastrointestinal dysmotility. Arthritis Care Res. 71, 1164–1170 (2019).

CAS  Google Scholar 

McMahan, Z. H., Paik, J. J., Wigley, F. M. & Hummers, L. K. Determining the risk factors and clinical features associated with severe gastrointestinal dysmotility in systemic sclerosis. Arthritis Care Res. 70, 1385–1392 (2018).

Google Scholar 

Dein, E. et al. Evaluation of risk factors for pseudo-obstruction in systemic sclerosis. Semin. Arthritis Rheum. 49, 405–410 (2019).

Google Scholar 

Ziessman, H. A., Jeyasingam, M., Khan, A. U., McMahan, Z. & Pasricha, P. J. Experience with esophagogastrointestinal transit scintigraphy in the initial 229 patients: multiple regions of dysmotility are common. J. Nucl. Med. 62, 115–122 (2021).

Google Scholar 

Vigone, B. et al. Preliminary safety and efficacy profile of prucalopride in the treatment of systemic sclerosis (SSc)-related intestinal involvement: results from the open label cross-over PROGASS study. Arthritis Res. Ther. 19, 145 (2017).

Google Scholar 

Karamanolis, G. P. et al. The 5-HT1A receptor agonist buspirone improves esophageal motor function and symptoms in systemic sclerosis: a 4-week, open-label trial. Arthritis Res. Ther. 18, 195 (2016).

Google Scholar 

McMahan, Z. H. & Khanna, D. Managing gastrointestinal complications in patients with systemic sclerosis. Curr. Treat. Options Gastroenterol. 18, 531–544 (2020).

CAS  Google Scholar 

Rigamonti, C. et al. Clinical features and prognosis of primary biliary cirrhosis associated with systemic sclerosis. Gut 55, 388–394 (2006).

CAS  Google Scholar 

Morrisroe, K. et al. Gastric antral vascular ectasia in systemic sclerosis: a study of its epidemiology, disease characteristics and impact on survival. Arthritis Res. Ther. 24, 103 (2022).

Google Scholar 

Drokhlyansky, E. et al. The human and mouse enteric nervous system at single-cell resolution. Cell 182, 1606–1622.e1623 (2020).

CAS  Google Scholar 

Morarach, K. et al. Diversification of molecularly defined myenteric neuron classes revealed by single-cell RNA sequencing. Nat. Neurosci. 24, 34–46 (2021).

CAS  Google Scholar 

Jarret, A. et al. Enteric nervous system-derived IL-18 orchestrates mucosal barrier immunity. Cell 180, 813–814 (2020).

CAS  Google Scholar 

Muller, P. A. et al. Crosstalk between muscularis macrophages and enteric neurons regulates gastrointestinal motility. Cell 158, 300–313 (2014).

CAS  Google Scholar 

Nickerson, A. J., Rottgen, T. S. & Rajendran, V. M. Activation of KCNQ (KV7) K+ channels in enteric neurons inhibits epithelial Cl– secretion in mouse distal colon. Am. J. Physiol. Cell Physiol. 320, C1074–C1087 (2021).

CAS  Google Scholar 

Moreno, S. et al. Epithelial propionyl- and butyrylcholine as novel regulators of colonic ion transport. Br. J. Pharmacol. 173, 2766–2779 (2016).

CAS  Google Scholar 

Fung, C. & Vanden Berghe, P. Functional circuits and signal processing in the enteric nervous system. Cell Mol. Life Sci. 77, 4505–4522 (2020).

CAS  Google Scholar 

Phillips, R. J. & Powley, T. L. Innervation of the gastrointestinal tract: patterns of aging. Auton. Neurosci. 136, 1–19 (2007).

Google Scholar 

Kang, Y. N., Fung, C. & Vanden Berghe, P. Gut innervation and enteric nervous system development: a spatial, temporal and molecular tour de force. Development 148, dev182543 (2021).

CAS  Google Scholar 

Duan, H. et al. Regulation of the autonomic nervous system on intestine. Front. Physiol. 12, 700129 (2021).

Google Scholar 

Powley, T. L. Brain-gut communication: vagovagal reflexes interconnect the two “brains”. Am. J. Physiol. Gastrointest. Liver Physiol. 321, G576–G587 (2021).

CAS  Google Scholar 

Masliukov, P. M., Emanuilov, A. I. & Budnik, A. F. Sympathetic innervation of the development, maturity, and aging of the gastrointestinal tract. Anat. Rec. https://doi.org/10.1002/ar.25015 (2022).

Google Scholar 

Mercado-Perez, A. & Beyder, A. Gut feelings: mechanosensing in the gastrointestinal tract. Nat. Rev. Gastroenterol. Hepatol. 19, 283–296 (2022).

Google Scholar 

Spencer, N. J. & Hu, H. Enteric nervous system: sensory transduction, neural circuits and gastrointestinal motility. Nat. Rev. Gastroenterol. Hepatol. 17, 338–351 (2020).

Google Scholar 

Kulkarni, S., Kurapati, S. & Bogunovic, M. Neuro-innate immune interactions in gut mucosal immunity. Curr. Opin. Immunol. 68, 64–71 (2021).

CAS  Google Scholar 

Dowling, L. R., Strazzari, M. R., Keely, S. & Kaiko, G. E. Enteric nervous system and intestinal epithelial regulation of the gut-brain axis. J. Allergy Clin. Immunol. 150, 513–522 (2022).

CAS  Google Scholar 

Vaes, N., Idris, M., Boesmans, W., Alves, M. M. & Melotte, V. Nerves in gastrointestinal cancer: from mechanism to modulations. Nat. Rev. Gastroenterol. Hepatol. 19, 768–784 (2022).

Google Scholar 

Holland, A. M., Bon-Frauches, A. C., Keszthelyi, D., Melotte, V. & Boesmans, W. The enteric nervous system in gastrointestinal disease etiology. Cell Mol. Life Sci. 78, 4713–4733 (2021).

CAS  Google Scholar 

Agirman, G., Yu, K. B. & Hsiao, E. Y. Signaling inflammation across the gut-brain axis. Science 374, 1087–1092 (2021).

CAS  Google Scholar 

Zhao, Q. et al. A multidimensional coding architecture of the vagal interoceptive system. Nature 603, 878–884 (2022).

CAS  Google Scholar 

Lagomarsino, V. N., Kostic, A. D. & Chiu, I. M. Mechanisms of microbial-neuronal interactions in pain and nociception. Neurobiol. Pain. 9, 100056 (2021).

CAS  Google Scholar 

Lai, N. Y. et al. Gut-innervating nociceptor neurons regulate Peyer’s patch microfold cells and SFB levels to mediate Salmonella host defense. Cell 180, 33–49 e22 (2020).

CAS  Google Scholar 

Lai, N. Y., Mills, K. & Chiu, I. M. Sensory neuron regulation of gastrointestinal inflammation and bacterial host defence. J. Intern. Med. 282, 5–23 (2017).

CAS  Google Scholar 

Chang, H. Y., Mashimo, H. & Goyal, R. K. IV Current concepts of vagal efferent projections to the gut. Am. J. Physiol. Gastrointest. Liver Physiol. 284, G357–G366 (2003).

CAS  Google Scholar 

Matzel, K. E., Stadelmaier, U., Hohenfellner, M. & Gall, F. P. Electrical stimulation of sacral spinal nerves for treatment of faecal incontinence. Lancet 346, 1124–1127 (1995).

CAS  Google Scholar 

Willemze, R. A. et al. Loss of intestinal sympathetic innervation elicits an innate immune driven colitis. Mol. Med. 25, 1 (2019).

Google Scholar 

Muller, P. A. et al. Microbiota modulate sympathetic neurons via a gut–brain circuit. Nature 583, 441–446 (2020).

CAS  Google Scholar 

Schirmer, M. et al. Linking the human gut microbiome to inflammatory cytokine production capacity. Cell 167, 1125–1136.e1128 (2016).

CAS  Google Scholar 

Sato, Y. et al. Novel bile acid biosynthetic pathways are enriched in the microbiome of centenarians. Nature 599, 458–464 (2021).

CAS  Google Scholar 

Sjogren, R. W. Gastrointestinal motility disorders in scleroderma. Arthritis Rheum. 37, 1265–1282 (1994).

CAS  Google Scholar 

Roberts, C. G., Hummers, L. K., Ravich, W. J., Wigley, F. M. & Hutchins, G. M. A case-control study of the pathology of oesophageal disease in systemic sclerosis (scleroderma). Gut 55, 1697–1703 (2006).

CAS  Google Scholar 

D’Angelo, W. A., Fries, J. F., Masi, A. T. & Shulman, L. E. Pathologic observations in systemic sclerosis (scleroderma). A study of fifty-eight autopsy cases and fifty-eight matched controls. Am. J. Med. 46, 428–440 (1969).

Google Scholar 

Howe, S. et al. Antimyenteric neuronal antibodies in scleroderma. J. Clin. Invest. 94, 761–770 (1994).

CAS  Google Scholar 

Singh, J. et al. Effects of scleroderma antibodies and pooled human immunoglobulin on anal sphincter and colonic smooth muscle function. Gastroenterology 143, 1308–1318 (2012).

CAS  Google Scholar 

Singh, J. et al. Immunoglobulins from scleroderma patients inhibit the muscarinic receptor activation in internal anal sphincter smooth muscle cells. Am. J. Physiol. Gastrointest. Liver Physiol. 297, G1206–G1213 (2009).

CAS  Google Scholar 

Amaral, T. N., Peres, F. A., Lapa, A. T., Marques-Neto, J. F. & Appenzeller, S. Neurologic involvement in scleroderma: a systematic review. Semin. Arthritis Rheum. 43, 335–347 (2013).

Google Scholar 

Thoua, N. M., Schizas, A., Forbes, A., Denton, C. P. & Emmanuel, A. V. Internal anal sphincter atrophy in patients with systemic sclerosis. Rheumatology 50, 1596–1602 (2011).

Google Scholar 

Thoua, N. M., Abdel-Halim, M., Forbes, A., Denton, C. P. & Emmanuel, A. V. Fecal incontinence in systemic sclerosis is secondary to neuropathy. Am. J. Gastroenterol. 107, 597–603 (2012).

留言 (0)

沒有登入
gif