Practical Guidance for Developing Small-Molecule Optical Probes for In Vivo Imaging

Massoud TF, Gambhir SS (2003) Molecular imaging in living subjects: seeing fundamental biological processes in a new light. Genes Dev 17:545–580. https://doi.org/10.1101/gad.1047403

Article  CAS  Google Scholar 

Jaffer FA, Weissleder R (2005) Molecular imaging in the clinical arena. JAMA 293:855–862. https://doi.org/10.1001/jama.293.7.855

Article  CAS  Google Scholar 

Ahn BC (2011) Applications of molecular imaging in drug discovery and development process. Curr Pharm Biotechnol 12:459–468

Article  CAS  Google Scholar 

Contag PR (2002) Whole-animal cellular and molecular imaging to accelerate drug development. Drug Disc Today 7:555–562

Article  CAS  Google Scholar 

Hintersteiner M, Enz A, Frey P, Jaton AL, Kinzy W, Kneuer R, Neumann U, Rudin M, Staufenbiel M, Stoeckli M et al (2005) In vivo detection of amyloid-beta deposits by near-infrared imaging using an oxazine-derivative probe. Nat Biotechnol 23:577–583. https://doi.org/10.1038/nbt1085

Article  CAS  Google Scholar 

Weissleder R ed. Molecular imaging: principles and practice. Shelton, CT: People’s Medical Publishing House–USA; 2010.

Talebloo N, Gudi M, Robertson N, Wang P (2020) Magnetic particle imaging: current applications in biomedical research. J Magn Reson Imaging 51:1659–1668. https://doi.org/10.1002/jmri.26875

Article  Google Scholar 

Chandrasekharan P, Tay ZW, Zhou XY, Yu E, Orendorff R, Hensley D, Huynh Q, Fung KLB, VanHook CC, Goodwill P et al (2018) A perspective on a rapid and radiation-free tracer imaging modality, magnetic particle imaging, with promise for clinical translation. Br J Radiol 91:20180326. https://doi.org/10.1259/bjr.20180326

Article  Google Scholar 

Attia ABE, Balasundaram G, Moothanchery M, Dinish US, Bi R, Ntziachristos V, Olivo M (2019) A review of clinical photoacoustic imaging: current and future trends. Photoacoustics 16:100144. https://doi.org/10.1016/j.pacs.2019.100144

Article  Google Scholar 

Ray P (2011) Multimodality molecular imaging of disease progression in living subjects. J Biosci 36:499–504. https://doi.org/10.1007/s12038-011-9079-0

Article  Google Scholar 

Hong G, Antaris A, Dai H (2017) Near-infrared fluorophores for biomedical imaging. Nature Biomed Eng 1:0010

Article  CAS  Google Scholar 

Bednar B, Zhang GJ, Williams DL Jr, Hargreaves R, Sur C (2007) Optical molecular imaging in drug discovery and clinical development. Expert Opin Drug Discov 2:65–85. https://doi.org/10.1517/17460441.2.1.65

Article  CAS  Google Scholar 

Rudin M, Weissleder R (2003) Molecular imaging in drug discovery and development. Nat Rev Drug Discov 2:123–131. https://doi.org/10.1038/nrd1007

Article  CAS  Google Scholar 

Rao J, Dragulescu-Andrasi A, Yao H (2007) Fluorescence imaging in vivo: recent advances. Curr Opin Biotechnol 18:17–25. https://doi.org/10.1016/j.copbio.2007.01.003

Article  CAS  Google Scholar 

Ntziachristos V, Bremer C, Weissleder R (2003) Fluorescence imaging with near-infrared light: new technological advances that enable in vivo molecular imaging. Eur Radiol 13:195–208. https://doi.org/10.1007/s00330-002-1524-x

Article  Google Scholar 

Lakowicz J (1999) Principles of fluorescence spectroscopy. Plenum Publishing Corporation.

Villringer A, Planck J, Hock C, Schleinkofer L, Dirnagl U (1993) Near infrared spectroscopy (NIRS): a new tool to study hemodynamic changes during activation of brain function in human adults. Neurosci Lett 154:101–104. https://doi.org/10.1016/0304-3940(93)90181-j

Article  CAS  Google Scholar 

Mitchell GS, Gill RK, Boucher DL, Li C, Cherry SR (2011) In vivo Cerenkov luminescence imaging: a new tool for molecular imaging. Philos Transact A Math Phys Eng Sci 369:4605–4619. https://doi.org/10.1098/rsta.2011.0271

Article  CAS  Google Scholar 

Miao Q, Xie C, Zhen X, Lyu Y, Duan H, Liu X, Jokerst JV, Pu K (2017) Molecular afterglow imaging with bright, biodegradable polymer nanoparticles. Nat Biotechnol 35:1102–1110. https://doi.org/10.1038/nbt.3987

Article  CAS  Google Scholar 

Hu Z, Chen WH, Tian J, Cheng Z (2020) NIRF nanoprobes for cancer molecular imaging: approaching clinic. Trends Mol Med 26:469–482. https://doi.org/10.1016/j.molmed.2020.02.003

Article  CAS  Google Scholar 

Perumal V, Sivakumar PM, Zarrabi A, Muthupandian S, Vijayaraghavalu S, Sahoo K, Das A, Das S, Payyappilly SS, Das S (2019) Near infra-red polymeric nanoparticle based optical imaging in cancer diagnosis. J Photochem Photobiol B. 199:111630. https://doi.org/10.1016/j.jphotobiol.2019.111630

Article  CAS  Google Scholar 

Kim J, Lee N, Hyeon T (2017) Recent development of nanoparticles for molecular imaging. Philos Trans A Math Phys Eng Sci. 375. https://doi.org/10.1098/rsta.2017.0022

Yu J, Zhang X, Hao X, Zhang X, Zhou M, Lee CS, Chen X (2014) Near-infrared fluorescence imaging using organic dye nanoparticles. Biomater 35:3356–3364. https://doi.org/10.1016/j.biomaterials.2014.01.004

Article  CAS  Google Scholar 

Li J, Rao J, Pu K (2018) Recent progress on semiconducting polymer nanoparticles for molecular imaging and cancer phototherapy. Biomater 155:217–235. https://doi.org/10.1016/j.biomaterials.2017.11.025

Article  CAS  Google Scholar 

Shu X, Royant A, Lin MZ, Aguilera TA, Lev-Ram V, Steinbach PA, Tsien RY (2009) Mammalian expression of infrared fluorescent proteins engineered from a bacterial phytochrome. Sci 324:804–807. https://doi.org/10.1126/science.1168683

Article  Google Scholar 

Baloban M, Shcherbakova DM, Pletnev S, Pletnev VZ, Lagarias JC, Verkhusha VV (2017) Designing brighter near-infrared fluorescent proteins: insights from structural and biochemical studies. Chem Sci 8:4546–4557. https://doi.org/10.1039/c7sc00855d

Article  CAS  Google Scholar 

Filonov GS, Piatkevich KD, Ting LM, Zhang J, Kim K, Verkhusha VV (2011) Bright and stable near-infrared fluorescent protein for in vivo imaging. Nat Biotechnol 29:757–761. https://doi.org/10.1038/nbt.1918

Article  CAS  Google Scholar 

Shcherbakova DM, Verkhusha VV (2013) Near-infrared fluorescent proteins for multicolor in vivo imaging. Nat Methods 10:751–754. https://doi.org/10.1038/nmeth.2521

Article  CAS  Google Scholar 

Matlashov ME, Shcherbakova DM, Alvelid J, Baloban M, Pennacchietti F, Shemetov AA, Testa I, Verkhusha VV (2020) A set of monomeric near-infrared fluorescent proteins for multicolor imaging across scales. Nat Commun 11:239. https://doi.org/10.1038/s41467-019-13897-6

Article  CAS  Google Scholar 

Tsien RY (1998) The green fluorescent protein. Annu Rev Biochem 67:509–544. https://doi.org/10.1146/annurev.biochem.67.1.509

Article  CAS  Google Scholar 

Shaner NC, Steinbach PA, Tsien RY (2005) A guide to choosing fluorescent proteins. Nat Methods 2:905–909. https://doi.org/10.1038/nmeth819

Article  CAS  Google Scholar 

Avci P, Gupta A, Sadasivam M, Vecchio D, Pam Z, Pam N, Hamblin MR (2013) Low-level laser (light) therapy (LLLT) in skin: stimulating, healing, restoring. Semin Cutan Med Surg. 32:41–52

Google Scholar 

Zhang X, Ran C (2013) Dual functional small molecule probes as fluorophore and ligand for misfolding proteins. Curr Org Chem 17:580–593. https://doi.org/10.2174/1385272811317060004

Article  CAS  Google Scholar 

Arlauckas SP, Kumar M, Popov AV, Poptani H, Delikatny EJ (2017) Near infrared fluorescent imaging of choline kinase alpha expression and inhibition in breast tumors. Oncotarget 8:16518–16530. https://doi.org/10.18632/oncotarget.14965

Article  Google Scholar 

Hermanson GT. Fluorescent probes (2013) In: Bioconjugate techniques. Academic Press; 395–463.

Olson MT, Ly QP, Mohs AM (2019) Fluorescence guidance in surgical oncology: challenges, opportunities, and translation. Mol Imaging Biol 21:200–218. https://doi.org/10.1007/s11307-018-1239-2

Article  Google Scholar 

Belykh E, Martirosyan NL, Yagmurlu K, Miller EJ, Eschbacher JM, Izadyyazdanabadi M, Bardonova LA, Byvaltsev VA, Nakaji P, Preul MC (2016) Intraoperative fluorescence imaging for personalized brain tumor resection: current state and future directions. Front Surg 3:55. https://doi.org/10.3389/fsurg.2016.00055

Article  Google Scholar 

Ash C, Dubec M, Donne K, Bashford T (2017) Effect of wavelength and beam width on penetration in light-tissue interaction using computational methods. Lasers Med Sci 32:1909–1918. https://doi.org/10.1007/s10103-017-2317-4

Article  Google Scholar 

Ueno T, Nagano T (2011) Fluorescent probes for sensing and imaging. Nat Methods 8:642–645. https://doi.org/10.1038/nmeth.1663

Article  CAS  Google Scholar 

Lavis LD, Raines RT (2008) Bright ideas for chemical biology. ACS Chem Biol 3:142–155. https://doi.org/10.1021/cb700248m

Article  CAS  Google Scholar 

Fu Y, Finney NS (2018) Small-molecule fluorescent probes and their design. RSC Adv 8:29051–29061

Article  CAS  Google Scholar 

Horváth P, Šebej P, Šolomek T, Klán P (2015) Small-molecule fluorophores with large stokes shifts: 9-iminopyronin analogues as clickable tags. J Org Chem 80:1299–1311. https://doi.org/10.1021/jo502213t

Article  CAS  Google Scholar 

Zheng Q, Juette MF, Jockusch S, Wasserman MR, Zhou Z, Altman RB, Blanchard SC (2014) Ultra-stable organic fluorophores for single-molecule research. Chem Soc Rev 43:1044–1056. https://doi.org/10.1039/c3cs60237k

Article  CAS  Google Scholar 

Hudson GA, Cheng L, Yu J, Yan Y, Dyer DJ, McCarroll ME, Wang L (2010) Computational studies on response and binding selectivity of fluorescence sensors. J Phys Chem B 114:870–876. https://doi.org/10.1021/jp908368k

Article  CAS  Google Scholar 

Chen C, Baranov MS, Zhu L, Baleeva NS, Smirnov AY, Zaitseva SO, Yampolsky IV, Solntsev KM, Fang C (2019) Designing redder and brighter fluorophores by synergistic tuning of ground and excited states. Chem Commun (Camb) 55:2537–2540. https://doi.org/10.1039/c8cc10007a

Article  CAS  Google Scholar 

Grimm JB, Xie L, Casler JC, Patel R, Tkachuk AN, Falco N, Choi H, Lippincott-Schwartz J, Brown TA, Glick BS et al (2021) A general method to improve fluorophores using deuterated auxochromes. JACS Au 1:690–696. https://doi.org/10.1021/jacsau.1c00006

Article  CAS  Google Scholar 

Koide Y, Urano Y, Hanaoka K, Terai T, Nagano T (2011) Development of an Si-rhodamine-based far-red to near-infrared fluorescence probe selective for hypochlorous acid and its applications for biological imaging. J Am Chem Soc 133:5680–5682. https://doi.org/10.1021/ja111470n

留言 (0)

沒有登入
gif