Activation of the hedgehog signaling pathway is associated with the promotion of cell proliferation and epithelial–mesenchymal transition in chronic rhinosinusitis with nasal polyps

Fokkens WJ, Lund VJ, Hopkins C et al (2020) European position paper on rhinosinusitis and nasal polyps 2020. Rhinology 58:1–464. https://doi.org/10.4193/Rhin20.600

Article  Google Scholar 

Ciprandi G, Gelardi M (2021) Chronic rhinosinusitis with nasal polyposis: the role of personalized and integrated medicine. Monaldi Arch Chest Dis. https://doi.org/10.4081/monaldi.2021.1769

Article  Google Scholar 

Hopkins C (2019) Chronic rhinosinusitis with nasal polyps. N Engl J Med 381:55–63. https://doi.org/10.1056/NEJMcp1800215

Article  Google Scholar 

Chalermwatanachai T, Vilchez-Vargas R, Holtappels G et al (2018) Chronic rhinosinusitis with nasal polyps is characterized by dysbacteriosis of the nasal microbiota. Sci Rep 8:7926. https://doi.org/10.1038/s41598-018-26327-2

Article  CAS  Google Scholar 

Tomassen P, Vandeplas G, Van Zele T et al (2016) Inflammatory endotypes of chronic rhinosinusitis based on cluster analysis of biomarkers. J Allergy Clin Immunol 137(1449–1456):e4. https://doi.org/10.1016/j.jaci.2015.12.1324

Article  CAS  Google Scholar 

Vetuschi A, Pompili S, Di Marco GP et al (2020) Can the AGE/RAGE/ERK signalling pathway and the epithelial-to-mesenchymal transition interact in the pathogenesis of chronic rhinosinusitis with nasal polyps? Eur J Histochem. https://doi.org/10.4081/ejh.2020.3079

Article  Google Scholar 

Wang H, Hu DQ, Xiao Q et al (2021) Defective STING expression potentiates IL-13 signaling in epithelial cells in eosinophilic chronic rhinosinusitis with nasal polyps. J Allergy Clin Immunol 147:1692–1703. https://doi.org/10.1016/j.jaci.2020.12.623

Article  CAS  Google Scholar 

Xie Z, Zhang M, Zhou G et al (2021) Emerging roles of the Hedgehog signalling pathway in inflammatory bowel disease. Cell Death Discov 7:314. https://doi.org/10.1038/s41420-021-00679-7

Article  Google Scholar 

Ingham PW, McMahon AP (2001) Hedgehog signaling in animal development: paradigms and principles. Genes Dev 15:3059–3087. https://doi.org/10.1101/gad.938601

Article  CAS  Google Scholar 

Tate G, Li M, Suzuki T et al (2003) A new germline mutation of the PTCH gene in a Japanese patient with nevoid basal cell carcinoma syndrome associated with meningioma. Jpn J Clin Oncol 33:47–50. https://doi.org/10.1093/jjco/hyg005

Article  Google Scholar 

Rimkus TK, Carpenter RL, Qasem S et al (2016) Targeting the sonic hedgehog signaling pathway: review of smoothened and GLI inhibitors. Cancers (Basel). https://doi.org/10.3390/cancers8020022

Article  Google Scholar 

Ruiz i Altaba A (1997) Catching a glimpse of hedgehog. Cell 90:193–196. https://doi.org/10.1016/s0092-8674(00)80325-6

Article  Google Scholar 

Wang Y, Wang H, Yan Z et al (2020) The critical role of dysregulated Hh-FOXM1-TPX2 signaling in human hepatocellular carcinoma cell proliferation. Cell Commun Signal 18:116. https://doi.org/10.1186/s12964-020-00628-4

Article  CAS  Google Scholar 

Li LT, Jiang G, Chen Q et al (2015) Ki67 is a promising molecular target in the diagnosis of cancer (review). Mol Med Rep 11:1566–1572. https://doi.org/10.3892/mmr.2014.2914

Article  CAS  Google Scholar 

Ma J, Zhou C, Chen X (2021) miR-636 inhibits EMT, cell proliferation and cell cycle of ovarian cancer by directly targeting transcription factor Gli2 involved in Hedgehog pathway. Cancer Cell Int 21:64. https://doi.org/10.1186/s12935-020-01725-7

Article  CAS  Google Scholar 

Liu H, Li L, Chen H et al (2017) Silencing IGFBP-2 decreases pancreatic cancer metastasis and enhances chemotherapeutic sensitivity. Oncotarget 8:61674–61686. https://doi.org/10.18632/oncotarget.18669

Article  Google Scholar 

Yang J, Antin P, Berx G et al (2020) Guidelines and definitions for research on epithelial-mesenchymal transition. Nat Rev Mol Cell Biol 21:341–352. https://doi.org/10.1038/s41580-020-0237-9

Article  CAS  Google Scholar 

van Roy F (2014) Beyond E-cadherin: roles of other cadherin superfamily members in cancer. Nat Rev Cancer 14:121–134. https://doi.org/10.1038/nrc3647

Article  CAS  Google Scholar 

Takahashi T, Schleimer RP (2021) Epithelial-cell-derived extracellular vesicles in pathophysiology of epithelial injury and repair in chronic rhinosinusitis: connecting immunology in research lab to biomarkers in clinics. Int J Mol Sci. https://doi.org/10.3390/ijms222111709

Article  Google Scholar 

Wang X, Zhang N, Bo M et al (2016) Diversity of TH cytokine profiles in patients with chronic rhinosinusitis: a multicenter study in Europe, Asia, and Oceania. J Allergy Clin Immunol 138:1344–1353. https://doi.org/10.1016/j.jaci.2016.05.041

Article  CAS  Google Scholar 

Li H, Wang Y, Wang J (2022) Th17/Treg cells regulated by interleukin 6 in the pathogenesis of chronic rhinosinusitis with nasal polyps. Eur Arch Otorhinolaryngol 279:3493–3501. https://doi.org/10.1007/s00405-021-07163-z

Article  Google Scholar 

Lund VJ, Mackay IS (1993) Staging in rhinosinusitus. Rhinology 31:183–184

CAS  Google Scholar 

Lund VJ, Kennedy DW (1997) Staging for rhinosinusitis. Otolaryngol Head Neck Surg 117:S35-40. https://doi.org/10.1016/s0194-5998(97)70005-6

Article  CAS  Google Scholar 

Ma L, Shi J, Wang K et al (2022) Clinical characteristics of patients with CRSwNP with intensely high eosinophil level. Laryngosc Investig Otolaryngol 7:316–324. https://doi.org/10.1002/lio2.758

Article  Google Scholar 

Viksne RJ, Sumeraga G, Pilmane M (2021) Characterization of cytokines and proliferation marker Ki67 in chronic rhinosinusitis with nasal polyps: a pilot study. Medicina (Kaunas). https://doi.org/10.3390/medicina57060607

Article  Google Scholar 

Eskeland O, Danielsen KA, Dahl F et al (2017) Causes of higher symptomatic airway load in patients with chronic rhinosinusitis. BMC Ear Nose Throat Disord 17:15. https://doi.org/10.1186/s12901-017-0048-6

Article  Google Scholar 

Wu D, Wang J, Zhang M (2016) Altered Th17/Treg ratio in nasal polyps with distinct cytokine profile: association with patterns of inflammation and mucosal remodeling. Medicine (Baltimore) 95:e2998. https://doi.org/10.1097/MD.0000000000002998

Article  CAS  Google Scholar 

Yan B, Lou H, Wang Y et al (2019) Epithelium-derived cystatin SN enhances eosinophil activation and infiltration through IL-5 in patients with chronic rhinosinusitis with nasal polyps. J Allergy Clin Immunol 144:455–469. https://doi.org/10.1016/j.jaci.2019.03.026

Article  CAS  Google Scholar 

Bachert C, Han JK, Desrosiers MY et al (2022) Efficacy and safety of benralizumab in chronic rhinosinusitis with nasal polyps: a randomized, placebo-controlled trial. J Allergy Clin Immunol 149(1309–1317):e12. https://doi.org/10.1016/j.jaci.2021.08.030

Article  CAS  Google Scholar 

Xu C, Zou C, Hussain M et al (2018) High expression of Sonic hedgehog in allergic airway epithelia contributes to goblet cell metaplasia. Mucosal Immunol 11:1306–1315. https://doi.org/10.1038/s41385-018-0033-4

Article  CAS  Google Scholar 

Zou Y, Song W, Zhou L et al (2019) House dust mite induces Sonic hedgehog signaling that mediates epithelialmesenchymal transition in human bronchial epithelial cells. Mol Med Rep 20:4674–4682. https://doi.org/10.3892/mmr.2019.10707

Article  CAS  Google Scholar 

Guy CD, Suzuki A, Zdanowicz M et al (2012) Hedgehog pathway activation parallels histologic severity of injury and fibrosis in human nonalcoholic fatty liver disease. Hepatology 55:1711–1721. https://doi.org/10.1002/hep.25559

Article  CAS  Google Scholar 

Amankulor NM, Hambardzumyan D, Pyonteck SM et al (2009) Sonic hedgehog pathway activation is induced by acute brain injury and regulated by injury-related inflammation. J Neurosci 29:10299–10308. https://doi.org/10.1523/JNEUROSCI.2500-09.2009

Article  CAS  Google Scholar 

Skoda AM, Simovic D, Karin V et al (2018) The role of the Hedgehog signaling pathway in cancer: a comprehensive review. Bosn J Basic Med Sci 18:8–20. https://doi.org/10.17305/bjbms.2018.2756

Article  CAS  Google Scholar 

Ramsbottom SA, Pownall ME (2016) Regulation of hedgehog signalling inside and outside the cell. J Dev Biol 4:23. https://doi.org/10.3390/jdb4030023

Article  CAS  Google Scholar 

Niewiadomski P, Niedziolka SM, Markiewicz L et al (2019) Gli proteins: regulation in development and cancer. Cells. https://doi.org/10.3390/cells8020147

Article  Google Scholar 

Jeng KS, Jeng CJ, Jeng WJ et al (2019) Sonic Hedgehog signaling pathway as a potential target to inhibit the progression of hepatocellular carcinoma. Oncol Lett 18:4377–4384. https://doi.org/10.3892/ol.2019.10826

Article  CAS  Google Scholar 

Ke B, Wang XN, Liu N et al (2020) Sonic hedgehog/Gli1 signaling pathway regulates cell migration and invasion via induction of epithelial-to-mesenchymal transition in gastric cancer. J Cancer 11:3932–3943. https://doi.org/10.7150/jca.42900

Article  CAS  Google Scholar 

Wang M, Zhu S, Peng W et al (2014) Sonic hedgehog signaling drives proliferation of synoviocytes in rheumatoid arthritis: a possible novel therapeutic target. J Immunol Res. https://doi.org/10.1155/2014/401903

Article  Google Scholar 

Song M, Ou X, Xiao C et al (2013) Hedgehog signaling inhibitor cyclopamine induces apoptosis by decreasing Gli2 and Bcl2 expression in human salivary pleomorphic adenoma cells. Biomed Rep 1:325–329. https://doi.org/10.3892/br.2013.61

Article  CAS  Google Scholar 

Riaz SK, Khan JS, Shah STA et al (2018) Involvement of hedgehog pathway in early onset, aggressive molecular subtypes and metastatic potential of breast cancer. Cell Commun Signal 16:3. https://doi.org/10.1186/s12964-017-0213-y

Article  CAS  Google Scholar 

Deng H, Sun Y, Wang W et al (2019) The hippo pathway effector Yes-associated protein promotes epithelial proliferation and remodeling in chronic rhinosinusitis with nasal polyps. Allergy 74:731–742. https://doi.org/10.1111/all.13647

Article  CAS  Google Scholar 

Yoo YA, Kang MH, Kim JS et al (2008) Sonic hedgehog signaling promotes motility and invasiveness of gastric cancer cells through TGF-beta-mediated activation of the ALK5-Smad 3 pathway. Carcinogenesis 29:480–490. https://doi.org/10.1093/carcin/bgm281

Article  CAS  Google Scholar 

Li X, Deng W, Lobo-Ruppert SM et al (2007) Gli1 acts through Snail and E-cadherin to promote nuclear signaling by beta-catenin. Oncogene 26:4489–4498. https://doi.org/10.1038/sj.onc.1210241

Article  CAS  Google Scholar 

Yan B, Wang Y, Li Y et al (2019) Inhibition of arachidonate 15-lipoxygenase reduces the epithelial-mesenchymal transition in eosinophilic chronic rhinosinu

留言 (0)

沒有登入
gif