Peripapillary microvasculature changes after vitrectomy in epiretinal membrane via swept-source OCT angiography

Fraser-Bell S, Guzowski M, Rochtchina E, Wang JJ, Mitchell P. Five-year cumulative incidence and progression of epiretinal membranes: the Blue Mountains Eye Study. Ophthalmology. 2003;110(1):34–40.

Article  Google Scholar 

Michels RG. Vitrectomy for macular pucker. Ophthalmology. 1984;91(11):1384–8.

Article  CAS  Google Scholar 

Charles S. Techniques and tools for dissection of epiretinal membranes. Graefes Arch Clin Exp Ophthalmol. 2003;241(5):347–52.

Article  Google Scholar 

Elhusseiny AM, Flynn HW Jr, Smiddy WE. Long-Term Outcomes After Idiopathic Epiretinal Membrane Surgery. Clin Ophthalmol. 2020;14:995–1002.

Article  Google Scholar 

Yamashita T, Uemura A, Kita H, Sakamoto T. Analysis of the retinal nerve fiber layer after indocyanine green-assisted vitrectomy for idiopathic macular holes. Ophthalmology. 2006;113:280–4.

Article  Google Scholar 

Yamashita T, Uemura A, Kita H, Nakao K, Sakamoto T. Long-term outcomes of visual field defects after indocyanine green-assisted macular hole surgery. Retina. 2008;28(9):1228–33.

Article  Google Scholar 

Lee SB, Shin YI, Jo YJ, Kim JY. Longitudinal changes in retinal nerve fiber layer thickness after vitrectomy for epiretinal membrane. Invest Ophthalmol Vis Sci. 2014;55:6607–11.

Article  Google Scholar 

Hibi N, Kondo M, Ishikawa K, Ueno S, Komeima K, Terasaki H. Transient increase of retinal nerve fiber layer thickness after macular hole surgery. Int Ophthalmol. 2014;34:575–81.

Article  Google Scholar 

Balducci N, Morara M, Veronese C, Torrazza C, Pichi F, Ciardella AP. Retinal nerve fiber layer thickness modification after internal limiting membrane peeling. Retina. 2014;34(4):655–63.

Article  Google Scholar 

Mariotti C, Nicolai M, Longo A, et al. Peripapillary retinal nerve fiber thickness changes after vitrectomy for epiretinal membrane in eyes with and without vitreous detachment. Retina. 2017;37(12):2304–9.

Article  Google Scholar 

Kim KY, Yu SY, Kim MS, Kim ES, Kwak HW. Changes of parafoveal retinal nerve fiber layer thickness analyzed by spectral-domain optical coherence tomography after pars plana vitrectomy. Retina. 2013;33(4):776–84.

Article  Google Scholar 

Tarannum M, Nagalla B. Peripapillary Vessel Density and Retinal Nerve Fiber Layer Thickness in Patients with Unilateral Primary Angle Closure Glaucoma with Superior Hemifield Defect. Journal of Current Glaucoma Practice. 2019;13(1):21–7.

Article  Google Scholar 

Xu X, Chen C, Ding W, et al. Automated quantification of superficial retinal capillaries and large vessels for diabetic retinopathy on optical coherence tomographic angiography. J Biophotonics. 2019;12(11): e201900103.

Article  Google Scholar 

Alibhai AY, De Pretto LR, Moult EM, et al. Quantification of retinal capillary nonperfusion in diabetes using wide-field optical coherence tomography angiography. Retina. 2020;40(3):412–20.

Article  Google Scholar 

Eastline M, Munk MR, Wolf S, et al. Repeatability of wide-field optical coherence tomography angiography in normal retina. Transl Vis Sci Technol. 2019;8(3):6.

Article  Google Scholar 

Mastropasqua L, Borrelli E, Carpineto P, et al. Microvascular changes after vitrectomy with internal limiting membrane peeling: an optical coherence tomography angiography study. Int Ophthalmol. 2018;38(4):1465–72.

Article  Google Scholar 

Navajas EV, Schuck N, Govetto A, et al. En Face Optical Coherence Tomography and Optical Coherence Tomography Angiography of Inner Retinal Dimples After Internal Limiting Membrane Peeling for Full-thickness Macular Holes. Retina. 2020;40(3):557–66.

Article  Google Scholar 

Mao J, Lao J, Liu C, et al. A study analyzing macular microvasculature features after vitrectomy using OCT angiography in patients with idiopathic macular epiretinal membrane. BMC Ophthalmol. 2020;20(1):165.

Article  Google Scholar 

Bonfiglio V, Ortisi E, Nebbioso M, et al. Optical coherence tomography angiography evaluation of peripapillary microvascular changes after rhegmatogenous retinal detachment repair. Retina. 2021;41(12):2540–8.

Article  CAS  Google Scholar 

Yarmohammadi A, Zangwill LM, Diniz-Filho A, et al. Optical Coherence Tomography Angiography Vessel Density in Healthy, Glaucoma Suspect, and Glaucoma Eyes. Invest Ophthalmol Vis Sci. 2016;57(9):451–9.

Article  Google Scholar 

She X, Guo J, Liu X, et al. Reliability of Vessel Density Measurements in the Peripapillary Retina and Correlation with Retinal Nerve Fiber Layer Thickness in Healthy Subjects Using Optical Coherence Tomography Angiography. Ophthalmologica. 2018;240(4):183–90.

Article  CAS  Google Scholar 

Kim AY, Chu Z, Shahidzadeh A, Wang RK, Puliafito CA, Kashani AH. Quantifying microvascular density and morphology in diabetic retinopathy usingspectral-domain optical coherence tomography angiography. Invest Ophthalmol Vis Sci. 2016;57(9):362–70.

Article  Google Scholar 

Kim K, In You J, Park JR, Kim ES, Oh WY, Yu SY. Quantification of retinal microvascular parameters by severity of diabetic retinopathy using wide-field swept-source optical coherence tomography angiography. Graefes Arch Clin Exp Ophthalmol. 2021;259(8):2103–11.

Article  CAS  Google Scholar 

Kunikata H, Abe T, Kinukawa J, Nishida K. Preoperative factors predictive of postoperative decimal visual acuity ≥ 1.0 following surgical treatment for idiopathic epiretinal membrane. Clin Ophthalmol. 2011;5:147–54.

Article  Google Scholar 

Nitta E, Shiraga F, Shiragami C, Fukuda K, Yamashita A, Fujiwara A. Displacement of the retina and its recovery after vitrectomy in idiopathic epiretinal membrane. Am J Ophthalmol. 2013;155(6):1014-1020.e1.

Article  Google Scholar 

Koutsandrea CN, Apostolopoulos MN, Alonistiotis DA, et al. Indocyanine green-assisted epiretinal membrane peeling evaluated by optical coherence tomography and multifocal electroretinography. Clin Ophthalmol. 2007;1(4):535–44.

Google Scholar 

Gharbiya M, La Cava M, Tortorella P, et al. Peripapillary RNFL Thickness Changes Evaluated with Spectral Domain Optical Coherence Tomography after Uncomplicated Macular Surgery for Epiretinal Membrane. Semin Ophthalmol. 2017;32(4):449–55.

Article  CAS  Google Scholar 

Lalezary M, Shah RJ, Reddy RK, et al. Prospective Retinal and Optic Nerve Vitrectomy Evaluation (PROVE) study: Twelve-month findings. Ophthalmology. 2014;121:1983–9.

Article  Google Scholar 

Mackenzie PJ, Cioffi GA. Vascular anatomy of the optic nerve head. Can J Ophthalmol. 2008;43(3):308–12.

Article  Google Scholar 

Chan G, Balaratnasingam C, Xu J, et al. In vivo optical imaging of human retinal capillary networks using speckle variance optical coherence tomography with quantitative clinico-histological correlation. Microvasc Res. 2015;100:32–9.

Article  Google Scholar 

Vujosevic S, Muraca A, Gatti V, et al. Peripapillary Microvascular and Neural Changes in Diabetes Mellitus: An OCT-Angiography Study. Invest Ophthalmol Vis Sci. 2018;59(12):5074–81.

Article  Google Scholar 

Rao HL, Pradhan ZS, Weinreb RN, et al. Relationship of optic nerve structure and function to peripapillary vessel density measurements of optical coherence tomography angiography in glaucoma. J Glaucoma. 2017;26(6):548–54.

Article  Google Scholar 

Akagi T, Iida Y, Nakanishi H, et al. Microvascular density in glaucomatous eyes with hemifield visual field defects: an optical coherence tomography angiography study. Am J Ophthalmol. 2016;168:237–49.

Article  Google Scholar 

Leung CK, Choi N, Weinreb RN, et al. Retinal nerve fiber layer imaging with spectral-domain optical coherence tomography: pattern of RNFL defects in glaucoma. Ophthalmology. 2010;117(12):2337–44.

Article  Google Scholar 

Tatham AJ, Weinreb RN, Zangwill LM, Liebmann JM, Girkin CA, Medeiros FA. Estimated retinal ganglion cell counts in glaucomatous eyes with localized retinal nerve fiber layer defects. Am J Ophthalmol. 2013;156(3):578-587.e1.

Article  Google Scholar 

Holló G. Vessel density calculated from OCT angiography in 3 peripapillary sectors in normal, ocular hypertensive, and glaucoma eyes. Eur J Ophthalmol. 2016;26(3):e42–5.

Article  Google Scholar 

Shin YI, Nam KY, Lee SE, et al. Peripapillary microvasculature in patients with diabetes mellitus: An optical coherence tomography angiography study. Sci Rep. 2019;9(1):15814.

Article  Google Scholar 

Custo Greig E, Brigell M, Cao F, et al. Macular and Peripapillary Optical Coherence Tomography Angiography Metrics Predict Progression in Diabetic Retinopathy: A Sub-analysis of TIME-2b Study Data. Am J Ophthalmol. 2020;219:66–76.

Article  Google Scholar 

Ferrer-Martín RM, Martín-Oliva D, Sierra-Martín A, et al. Microglial Activation Promotes Cell Survival in Organotypic Cultures of Postnatal Mouse Retinal Explants. PLoS ONE. 2015;10: e0135238.

Article  Google Scholar 

留言 (0)

沒有登入
gif