Autophagy, molecular chaperones, and unfolded protein response as promoters of tumor recurrence

Fluegen, G., Avivar-Valderas, A., Wang, Y., Padgen, M. R., Williams, J. K., Nobre, A. R., & Aguirre-Ghiso, J. A. (2017). Phenotypic heterogeneity of disseminated tumour cells is preset by primary tumour hypoxic microenvironments. Nat. Cell Biol., 19(2), 120–132. https://doi.org/10.1038/ncb3465

Article  CAS  Google Scholar 

De Angelis, M. L., Francescangeli, F., La Torre, F., & Zeuner, A. (2019). Stem cell plasticity and dormancy in the development of cancer therapy resistance. Front Oncol, 9, 626. https://doi.org/10.3389/fonc.2019.00626

Article  Google Scholar 

Hen, O., & Barkan, D. (2020). Dormant disseminated tumor cells and cancer stem/progenitor-like cells: similarities and opportunities. Semin. Cancer Biol., 60, 157–165. https://doi.org/10.1016/j.semcancer.2019.09.002

Article  CAS  Google Scholar 

De Angelis, M. L., Francescangeli, F., & Zeuner, A. (2019). Breast cancer stem cells as drivers of tumor chemoresistance, dormancy and relapse: new challenges and therapeutic opportunities. Cancers., 11(10), 1569. https://doi.org/10.3390/cancers11101569

Article  CAS  Google Scholar 

Yang, C., Tian, G., Dajac, M., Doty, A., Wang, S., Lee, J. H., et al. (2022). Slow-cycling cells in glioblastoma: a specific population in the cellular mosaic of cancer stem cells. Cancers, 14(5), 1–18. https://doi.org/10.3390/cancers14051126

Article  CAS  Google Scholar 

Nik Nabil, W. N., Xi, Z., Song, Z., Jin, L., Zhang, X. D., Zhou, H., et al. (2021). Towards a framework for better understanding of quiescent cancer cells. Cells., 10(3), 562. https://doi.org/10.3390/cells10030562

Article  CAS  Google Scholar 

Basu, S., Dong, Y., Kumar, R., Jeter, C., & Tang, D. G. (2022). Slow-cycling (dormant) cancer cells in therapy resistance, cancer relapse and metastasis. Semin. Cancer Biol., 78, 90–103. https://doi.org/10.1016/j.semcancer.2021.04.021

Article  CAS  Google Scholar 

Sistigu, A., Musella, M., Galassi, C., Vitale, I., & De Maria, R. (2020). Tuning cancer fate: tumor microenvironment’s role in cancer stem cell quiescence and reawakening. Front. Immunol., 11(October). https://doi.org/10.3389/fimmu.2020.02166

Tamamouna, V., Pavlou, E., Neophytou, C. M., Papageorgis, P., & Costeas, P. (2022). Regulation of metastatic tumor dormancy and emerging opportunities for therapeutic intervention. Int. J. Mol. Sci., 23(22), 13931. https://doi.org/10.3390/ijms232213931

Article  CAS  Google Scholar 

Vera-Ramirez, L. (2020). Cell-intrinsic survival signals. The role of autophagy in metastatic dissemination and tumor cell dormancy. In Seminars in Cancer Biology (Vol. 60, pp. 28–40). Elsevier.

Google Scholar 

Yang, X., Liang, X., Zheng, M., & Tang, Y. (2018). Cellular phenotype plasticity in cancer dormancy and metastasis. Front Oncol, 8(NOV), 1–12. https://doi.org/10.3389/fonc.2018.00505

Article  Google Scholar 

Damen, M. P. F., van Rheenen, J., & Scheele, C. L. G. J. (2021). Targeting dormant tumor cells to prevent cancer recurrence. FEBS Lett., 288(21), 6286–6303. https://doi.org/10.1111/febs.15626

Article  CAS  Google Scholar 

Holmgren, L., O’reilly, M. S., & Folkman, J. (1995). Dormancy of micrometastases: balanced proliferation and apoptosis in the presence of angiogenesis suppression. Nat. Med., 1(2), 149–153. https://doi.org/10.1038/nm0295-149

Article  CAS  Google Scholar 

Racila, E., Scheuermann, R. H., Picker, L. J., Yefenof, E., Tucker, T., Chang, W., Marches, R., Street, N. E., & E. S. V. and J. W. hr. (1995). Tumor dormancy and cell signaling. II. Antibody as an agonist in inducing dormancy of a B cell lymphoma in SCID mice. J. Exp. Med., 181(April), 1539–1550. https://doi.org/10.1084/jem.181.4.1539

Article  CAS  Google Scholar 

Zhou, N., Wu, X., Yang, B., Yang, X., Zhang, D., & Qing, G. (2014). Stem cell characteristics of dormant cells and cisplatin-induced effects on the stemness of epithelial ovarian cancer cells. Mol. Med. Rep., 10(5), 2495–2504. https://doi.org/10.3892/mmr.2014.2483

Article  CAS  Google Scholar 

Carcereri de Prati, A., Butturini, E., Rigo, A., Oppici, E., Rossin, M., Boriero, D., & Mariotto, S. (2017). Metastatic breast cancer cells enter into dormant state and express cancer stem cells phenotype under chronic hypoxia. J. Cell. Biochem., 118(10), 3237–3248. https://doi.org/10.1002/jcb.25972

Article  CAS  Google Scholar 

Hosseini, H., Obradovic, M. M. S., Hoffmann, M., Harper, K. L., Sosa, M. S., Werner-Klein, M., et al. (2016). Early dissemination seeds metastasis in breast cancer. Nature, 540(7634), 552–558. https://doi.org/10.1038/nature20785

Article  CAS  Google Scholar 

Pommier, A., Anaparthy, N., Memos, N., Kelley, Z. L., Gouronnec, A., Yan, R., et al. (2018). Unresolved endoplasmic reticulum stress engenders immune-resistant, latent pancreatic cancer metastases. Science, 360(6394), eaao4908.

Article  Google Scholar 

Baldominos, P., Barbera-Mourelle, A., Barreiro, O., Huang, Y., Wight, A., Cho, J.-W., et al. (2022). Quiescent cancer cells resist T cell attack by forming an immunosuppressive niche. Cell, 185(10), 1694–1708.e19. https://doi.org/10.1016/j.cell.2022.03.033

Article  CAS  Google Scholar 

Peitzsch, C., Tyutyunnykova, A., Pantel, K., & Dubrovska, A. (2017). Cancer stem cells: the root of tumor recurrence and metastases. Semin. Cancer Biol., 44, 10–24. https://doi.org/10.1016/j.semcancer.2017.02.011

Article  CAS  Google Scholar 

Xie, X. P., Laks, D. R., Sun, D., Ganbold, M., Wang, Z., Pedraza, A. M., et al. (2022). Quiescent human glioblastoma cancer stem cells drive tumor initiation, expansion, and recurrence following chemotherapy. Dev. Cell, 57(1), 32–46.e8. https://doi.org/10.1016/j.devcel.2021.12.007

Article  CAS  Google Scholar 

Leonce, C., Saintigny, P., & Ortiz-Cuaran, S. (2022). Cell-intrinsic mechanisms of drug tolerance to systemic therapies in cancer. Mol. Cancer, 20(1), 11–29. https://doi.org/10.1158/1541-7786.MCR-21-0038

Article  CAS  Google Scholar 

Dhanyamraju, P. K., Schell, T. D., Amin, S., & Robertson, G. P. (2022). Drug-tolerant persister cells in cancer therapy resistance. Cancer Res, 82(14), 2503–2514. https://doi.org/10.1158/0008-5472.CAN-21-3844

Article  CAS  Google Scholar 

Delahaye, C., Figarol, S., Pradines, A., Favre, G., Mazieres, J., & Calvayrac, O. (2022). Early steps of resistance to targeted therapies in non-small-cell lung cancer. Cancers. https://doi.org/10.3390/cancers14112613

Santos-de-Frutos, K., & Djouder, N. (2021). When dormancy fuels tumour relapse. Commun. Biol., 4(1), 747. https://doi.org/10.1038/s42003-021-02257-0

Article  Google Scholar 

Morales-Valencia, J., & David, G. (2022). The origins of cancer cell dormancy. Curr. Opin. Genet. Dev., 74, 101914. https://doi.org/10.1016/j.gde.2022.101914

Article  CAS  Google Scholar 

Rehman, S. K., Haynes, J., Collignon, E., Brown, K. R., Wang, Y., Nixon, A. M. L., & Lo, E. B. L. (2021). Colorectal cancer cells enter a diapause-like DTP state to survive chemotherapy. Cell, 184(1), 226–242.

Article  CAS  Google Scholar 

Ramirez, M., Rajaram, S., Steininger, R. J., Osipchuk, D., Roth, M. A., Morinishi, L. S., & Altschuler, S. J. (2016). Diverse drug-resistance mechanisms can emerge from drug-tolerant cancer persister cells. Nat. Comm., 7, 1–8. https://doi.org/10.1038/ncomms10690

Article  CAS  Google Scholar 

Oren, Y., Tsabar, M., Cuoco, M. S., Amir-Zilberstein, L., Cabanos, H. F., Hütter, J. C., et al. (2021). Cycling cancer persister cells arise from lineages with distinct programs. Nature, 596(7873), 576–582. https://doi.org/10.1038/s41586-021-03796-6

Article  CAS  Google Scholar 

Russo, M., Pompei, S., Sogari, A., Corigliano, M., Crisafulli, G., Puliafito, A., & Cosentino Lagomarsino, M. (2022). A modified fluctuation-test framework characterizes the population dynamics and mutation rate of colorectal cancer persister cells. Nat. Gen., 54(7), 976–984. https://doi.org/10.1038/s41588-022-01105-z

Article  CAS  Google Scholar 

Saleh, T., Tyutyunyk-Massey, L., & Gewirtz, D. A. (2019). Tumor cell escape from therapy-induced senescence as a model of disease recurrence after dormancy. Cancer Res., 79(6), 1044–1046. https://doi.org/10.1158/0008-5472.CAN-18-3437

Article  CAS  Google Scholar 

Saleh, T., Bloukh, S., Carpenter, V. J., Alwohoush, E., Bakeer, J., Darwish, S., & Gewirtz, D. A. (2020). Therapy-induced senescence: an “old” friend becomes the enemy. Cancers., 12(4), 822. https://doi.org/10.3390/cancers12040822

Article  CAS  Google Scholar 

Fitsiou, E., Soto-Gamez, A., & Demaria, M. (2022). Biological functions of therapy-induced senescence in cancer. Sem in Cancer Bio, 81, 5–13. https://doi.org/10.1016/j.semcancer.2021.03.021

Article  CAS  Google Scholar 

Vallette, F. M., Olivier, C., Lézot, F., Oliver, L., Cochonneau, D., Lalier, L., et al. (2019). Dormant, quiescent, tolerant and persister cells: four synonyms for the same target in cancer. Bioc. Pharm., 162(September), 169–176. https://doi.org/10.1016/j.bcp.2018.11.004

Article  CAS  Google Scholar 

Sauer, S., Reed, D. R., Ihnat, M., Hurst, R. E., Warshawsky, D., & Barkan, D. (2021). Innovative approaches in the battle against cancer recurrence: novel strategies to combat dormant disseminated tumor cells. Front in Onc., 11, 659963.

Article  Google Scholar 

Risson, E., Nobre, A. R., Maguer-Satta, V., & Aguirre-Ghiso, J. A. (2020). The current paradigm and challenges ahead for the dormancy of disseminated tumor cells. Nat. Cancer, 1(7), 672–680. https://doi.org/10.1038/s43018-020-0088-5

Article  CAS  Google Scholar 

Li, X., Sun, Z., Peng, G., Xiao, Y., Guo, J., Wu, B., et al. (2022). Single-cell RNA sequencing reveals a pro-invasive cancer-associated fibroblast subgroup associated with poor clinical outcomes in patients with gastric cancer. Theranostics, 12(2), 620.

Article  CAS  Google Scholar 

Lauber, K., & Herrmann, M. (2015). Tumor biology: with a little help from my dying friends. Curr. Bio., 25(5), R198–R201. https://doi.org/10.1016/j.cub.2015.01.040

Article  CAS  Google Scholar 

Sulciner, M. L., Serhan, C. N., Gilligan, M. M., Mudge, D. K., Chang, J., Gartung, A., et al. (2018). Resolvins suppress tumor growth and enhance cancer therapy. J of Exp. Med, 215(1), 115–140. https://doi.org/10.1084/jem.20170681

Article  CAS  Google Scholar 

Haak, V. M., Huang, S., & Panigrahy, D. (2021). Debris-stimulated tumor growth: a Pandora’s box? Cancer Metastasis Rev., 40(3), 791–801.

Article  CAS  Google Scholar 

Aguirre-Ghiso, J. A., Estrada, Y., Liu, D., & O. L. (2003). ERK(MAPK) activity as a determinant of tumor growth and dormancy; regulation by p38(SAPK). Urol. Oncol.: Semin. Orig., 63(1), 1684–1695.

CAS  Google Scholar 

Aguirre-Ghiso, J. A., Ossowski, L., & Rosenbaum, S. K. (2004). Green fluorescent protein tagging of extracellular signal-regulated kinase and p38 pathways reveals novel dynamics of pathwCancer Res.ay activation during primary and metastatic growth., 64(20), 7336–7345.

Gawrzak, S., Rinaldi, L., Gregorio, S., Arenas, E. J., Salvador, F., Urosevic, J., et al. (2018). MSK1 regulates luminal cell differentiation and metastatic dormancy in ER+ breast cancer. Nat. Cell Bio, 20(2), 211–221. https://doi.org/10.1038/s41556-017-0021-z

Article  CAS 

留言 (0)

沒有登入
gif