Targeting the Inside of Cells with Biologicals: Toxin Routes in a Therapeutic Context

de la Torre BG, Albericio F. The pharmaceutical industry in 2020: an analysis of FDA drug approvals from the perspective of molecules. Molecules. 2021;26:627.

Article  Google Scholar 

Zhang C, Ötjengerdes RM, Roewe J, Mejias R, Marschall ALJ. Applying antibodies inside cells: principles and recent advances in neurobiology, virology and oncology. BioDrugs. 2020. https://doi.org/10.1007/s40259-020-00419-w.

Article  Google Scholar 

Marschall ALJ, Dübel S, Böldicke T. Specific in vivo knockdown of protein function by intrabodies. MAbs. 2015;7:1010–35.

Article  CAS  Google Scholar 

Marschall ALJ, Dübel S. Antibodies inside of a cell can change its outside: can intrabodies provide a new therapeutic paradigm? Comput Struct Biotechnol J. 2016;14:304–8.

Article  CAS  Google Scholar 

Stewart MP, Langer R, Jensen KF. Intracellular delivery by membrane disruption: mechanisms, strategies, and concepts. Chem Rev. 2018;118:7409–531.

Article  CAS  Google Scholar 

Marschall ALJ. Targeting the inside of cells with biologicals: chemicals as a delivery strategy. BioDrugs Clin Immunother Biopharm Gene Ther. 2021;35:1–29.

Google Scholar 

Guillard S, Minter RR, Jackson RH. Engineering therapeutic proteins for cell entry: the natural approach. Trends Biotechnol. 2015;33:163–71.

Article  CAS  Google Scholar 

Wernick NLB, Chinnapen DJ-F, Cho JA, Lencer WI. Cholera toxin: an intracellular journey into the cytosol by way of the endoplasmic reticulum. Toxins. 2010;2:310–25.

Bagola K, Mehnert M, Jarosch E, Sommer T. Protein dislocation from the ER. Spec Sect Protein Translocat Inser Membr. 2011;1808:925–36.

CAS  Google Scholar 

Spooner RA, Lord JM. How ricin and Shiga toxin reach the cytosol of target cells: retrotranslocation from the endoplasmic reticulum. Curr Top Microbiol Immunol. 2012;357:19–40. https://doi.org/10.1007/82_2011_154.

Article  CAS  Google Scholar 

Spooner RA, Lord JM. Ricin trafficking in cells. Toxins. 2015;7:49–65.

Article  Google Scholar 

Teter K. Intracellular trafficking and translocation of pertussis toxin. Toxins. 2019;11:437.

Article  CAS  Google Scholar 

Ruggiano A, Foresti O, Carvalho P. ER-associated degradation: protein quality control and beyond. J Cell Biol. 2014;204:869–79.

Article  CAS  Google Scholar 

Teter K, Holmes RK. Inhibition of endoplasmic reticulum-associated degradation in CHO cells resistant to cholera toxin, Pseudomonas aeruginosa exotoxin A, and ricin. Infect Immun. 2002;70:6172–9.

Article  CAS  Google Scholar 

Michalska M, Wolf P. Pseudomonas exotoxin A: optimized by evolution for effective killing. Front Microbiol. 2015;6:963–963.

Article  Google Scholar 

Teter K, Allyn RL, Jobling MG, Holmes RK. Transfer of the cholera toxin A1 polypeptide from the endoplasmic reticulum to the cytosol is a rapid process facilitated by the endoplasmic reticulum-associated degradation pathway. Infect Immun. 2002;70:6166–71.

Article  CAS  Google Scholar 

LaPointe P, Wei X, Gariépy J. A role for the protease-sensitive loop region of Shiga-like toxin 1 in the retrotranslocation of its A1 domain from the endoplasmic reticulum lumen*. J Biol Chem. 2005;280:23310–8.

Article  CAS  Google Scholar 

Li S, Spooner RA, Hampton RY, Lord JM, Roberts LM. Cytosolic entry of Shiga-like toxin A chain from the yeast endoplasmic reticulum requires catalytically active Hrd1p. PLoS ONE. 2012;7: e41119.

Article  CAS  Google Scholar 

Chan YS, Ng TB. Shiga toxins: from structure and mechanism to applications. Appl Microbiol Biotechnol. 2016;100:1597–610.

Article  CAS  Google Scholar 

Simpson JC, Roberts LM, Romisch K, Davey J, Wolf DH, Lord JM. Ricin A chain utilises the endoplasmic reticulum-associated protein degradation pathway to enter the cytosol of yeast. FEBS Lett. 1999;459:80–4.

Article  CAS  Google Scholar 

Tesh VL, Burris JA, Owens JW, Gordon VM, Wadolkowski EA, O’Brien AD, et al. Comparison of the relative toxicities of Shiga-like toxins type I and type II for mice. Infect Immun. 1993;61:3392–402.

Article  CAS  Google Scholar 

Itoh K, Tezuka T, Inoue K, Tada H, Suzuki T. Different binding property of verotoxin-1 and verotoxin-2 against their glycolipid receptor, globotriaosylceramide. Tohoku J Exp Med. 2001;195:237–43.

Article  CAS  Google Scholar 

Sandvig K, van Deurs B. Transport of protein toxins into cells: pathways used by ricin, cholera toxin and Shiga toxin. FEBS Lett. 2002;529:49–53.

Article  CAS  Google Scholar 

Pfeffer SR. Multiple routes of protein transport from endosomes to the trans Golgi network. Golgi Complex. 2009;583:3811–6.

CAS  Google Scholar 

Li D, Selyunin A, Mukhopadhyay S. Targeting the early endosome-to-Golgi transport of Shiga toxins as a therapeutic strategy. Toxins. 2020;12:342.

Article  CAS  Google Scholar 

Sandvig K, Kavaliauskiene S, Skotland T. The protein toxins ricin and Shiga toxin as tools to explore cellular mechanisms of internalization and intracellular transport. Toxins. 2021;13:377.

Article  CAS  Google Scholar 

Chaudhary VK, Jinno Y, FitzGerald D, Pastan I. Pseudomonas exotoxin contains a specific sequence at the carboxyl terminus that is required for cytotoxicity. Proc Natl Acad Sci. 1990;87:308–12.

Article  CAS  Google Scholar 

Majoul IV, Bastiaens PI, Söling HD. Transport of an external Lys-Asp-Glu-Leu (KDEL) protein from the plasma membrane to the endoplasmic reticulum: studies with cholera toxin in Vero cells. J Cell Biol. 1996;133:777–89.

Article  CAS  Google Scholar 

Hessler JL, Kreitman RJ. An early step in Pseudomonas exotoxin action is removal of the terminal lysine residue, which allows binding to the KDEL receptor. Biochemistry. 1997;36:14577–82.

Article  CAS  Google Scholar 

Tarragó-Trani MT, Storrie B. Alternate routes for drug delivery to the cell interior: pathways to the Golgi apparatus and endoplasmic reticulum. Adv Drug Deliv Rev. 2007;59:782–97.

Article  Google Scholar 

Wales R, Chaddock JA, Roberts LM, Lord JM. Addition of an ER retention signal to the ricin A chain increases the cytotoxicity of the holotoxin. Exp Cell Res. 1992;203:1–4.

Article  CAS  Google Scholar 

Wales R, Roberts LM, Lord JM. Addition of an endoplasmic reticulum retrieval sequence to ricin A chain significantly increases its cytotoxicity to mammalian cells. J Biol Chem. 1993;268:23986–90.

Article  CAS  Google Scholar 

Johannes L, Tenza D, Antony C, Goud B. Retrograde transport of KDEL-bearing B-fragment of Shiga toxin. J Biol Chem. 1997;272:19554–61.

Article  CAS  Google Scholar 

Jackson ME, Simpson J, Girod A, Pepperkok R, Roberts L, Lord JM. The KDEL retrieval system is exploited by Pseudomonas exotoxin A, but not by Shiga-like toxin-1, during retrograde transport from the Golgi complex to the endoplasmic reticulum. J Cell Sci. 1999;112(Pt 4):467–75.

Article  CAS  Google Scholar 

Girod A, Storrie B, Simpson J, Johannes L, Roberts L, Lord J, et al. Evidence for a COP-I-independent transport route from the Golgi complex to the endoplasmic reticulum. Nat Cell Biol. 1999;1:423–30.

Article  CAS  Google Scholar 

Lencer WI, Constable C, Moe S, Jobling MG, Webb HM, Ruston S, et al. Targeting of cholera toxin and Escherichia coli heat labile toxin in polarized epithelia: role of COOH-terminal KDEL. J Cell Biol. 1995;131:951–62.

Article  CAS  Google Scholar 

Garred Ø, van Deurs B, Sandvig K. Furin-induced cleavage and activation of Shiga toxin*. J Biol Chem. 1995;270:10817–21.

Article  CAS  Google Scholar 

Garred Ø, Dubinina E, Polesskaya A, Olsnes S, Kozlov J, Sandvig K. Role of the disulfide bond in Shiga toxin A-chain for toxin entry into cells *. J Biol Chem. 1997;272:11414–9.

Article  CAS  Google Scholar 

Yu M, Haslam DB. Shiga toxin is transported from the endoplasmic reticulum following interaction with the luminal chaperone HEDJ/ERdj3. Infect Immun. 2005;73:2524–32.

Article  CAS  Google Scholar 

Hazes B, Read RJ. Accumulating evidence suggests that several AB-toxins subvert the endoplasmic reticulum-associated protein degradation pathway to enter target cells. Biochemistry. 1997;36:11051–4.

Article  CAS  Google Scholar 

Wesche J, Rapak A, Olsnes S. Dependence of ricin toxicity on translocation of the toxin A-chain from the endoplasmic reticulum to the cytosol *. J Biol Chem. 1999;274:34443–9.

Article  CAS  Google Scholar 

Schmitz A, Herrgen H, Winkeler A, Herzog V. Cholera toxin is exported from microsomes by the Sec61p complex. J Cell Biol. 2000;148:1203–12.

Article  CAS  Google Scholar 

Bernardi KM, Forster ML, Lencer WI, Tsai B. Derlin-1 facilitates the retro-translocation of cholera toxin. Mol Biol Cell. 2008;19:877–84.

Article  CAS  Google Scholar 

Bernardi KM, Williams JM, Kikkert M, van Voorden S, Wiertz EJ, Ye Y, et al. The E3 ubiquitin ligases Hrd1 and gp78 bind to and promote cholera toxin retro-translocation. Mol Biol Cell. 2010;21:140–51.

Article  CAS  Google Scholar 

Veithen A, Raze D, Locht C. Intracellular trafficking and membrane translocation of pertussis toxin into host cells. Int J Med Microbiol. 2000;290:409–13.

Article  CAS  Google Scholar 

Pande AH, Moe D, Jamnadas M, Tatulian SA, Teter K. The pertussis toxin S1 subunit is a thermally unstable protein susceptible to degradation by the 20S proteasome. Biochemistry. 2006;45:13734–40.

Article 

留言 (0)

沒有登入
gif