Reduced contrast sensitivity function correlated with superficial retinal capillary plexus impairment in early stage of dysthyroid optic neuropathy

Wang Y, Smith TJ. Current concepts in the molecular pathogenesis of thyroid-associated ophthalmopathy. Invest Ophthalmol Vis Sci. 2014;55(3):1735–48.

Article  CAS  Google Scholar 

Dolman PJ. Dysthyroid optic neuropathy: evaluation and management. J Endocrinol Invest. 2021;44(3):421–9.

Article  CAS  Google Scholar 

Blandford AD, Zhang D, Chundury RV, Perry JD. Dysthyroid optic neuropathy: update on pathogenesis, diagnosis, and management. Expert Rev Ophthalmol. 2017;12(2):111–21.

Article  CAS  Google Scholar 

Wong Y, Dickinson J, Perros P, Dayan C, Veeramani P, Morris D, et al. A British Ophthalmological Surveillance Unit (BOSU) study into dysthyroid optic neuropathy in the United Kingdom. Eye (Lond). 2018;32(10):1555–62.

Article  CAS  Google Scholar 

McKeag D, Lane C, Lazarus JH, Baldeschi L, Boboridis K, Dickinson AJ, et al. Clinical features of dysthyroid optic neuropathy: a European Group on Graves’ Orbitopathy (EUGOGO) survey. Br J Ophthalmol. 2007;91(4):455–8.

Article  Google Scholar 

Labonia AF, Carnovale-Scalzo G, Paola A, De’ Morelli G, Scorcia V, Bruzzichessi D, et al. Subclinical visual field alterations are commonly present in patients with Graves’ orbitopathy and are mainly related to the clinical activity of the disease. Exp Clin Endocrinol Diabetes. 2008;116(6):347–51.

Article  CAS  Google Scholar 

Arden GB. The importance of measuring contrast sensitivity in cases of visual disturbance. Br J Ophthalmol. 1978;62(4):198–209.

Article  CAS  Google Scholar 

Owsley C, Sloane ME. Contrast sensitivity, acuity, and the perception of ‘real-world’ targets. Br J Ophthalmol. 1987;71(10):791–6.

Article  CAS  Google Scholar 

Joltikov KA, de Castro VM, Davila JR, Anand R, Khan SM, Farbman N, et al. Multidimensional functional and structural evaluation reveals neuroretinal impairment in early diabetic retinopathy. Invest Ophthalmol Vis Sci. 2017;58(6):Bio277–90.

Article  Google Scholar 

Lin S, Mihailovic A, West SK, Johnson CA, Friedman DS, Kong X, et al. Predicting visual disability in glaucoma with combinations of vision measures. Transl Vis Sci Technol. 2018;7(2):22.

Article  Google Scholar 

Rosenkranz SC, Kaulen B, Zimmermann HG, Bittner AK, Dorr M, Stellmann JP. Validation of computer-adaptive contrast sensitivity as a tool to assess visual impairment in multiple sclerosis patients. Front Neurosci. 2021;15:591302.

Article  Google Scholar 

Vingopoulos F, Wai KM, Katz R, Vavvas DG, Kim LA, Miller JB. Measuring the contrast sensitivity function in non-neovascular and neovascular age-related macular degeneration: the quantitative contrast sensitivity function test. J Clin Med. 2021;10(13):2768.

Article  Google Scholar 

Suttorp-Schulten MS, Tijssen R, Mourits MP, Apkarian P. Contrast sensitivity function in Graves’ ophthalmopathy and dysthyroid optic neuropathy. Br J Ophthalmol. 1993;77(11):709–12.

Article  CAS  Google Scholar 

Tanner V, Tregear SJ, Ripley LG, Vickers SF. Automated achromatic contrast and chromatic discrimination sensitivity testing in dysthyroid optic neuropathy. Eye. 1995;9(Pt 3):352–7.

Article  Google Scholar 

De Marco R, Ambrosio G, Ferrara G. Measuring contrast sensitivity in patients with Graves’ ophthalmopathy complicated by ocular hypertension and suspect glaucoma or dysthyroid optic neuropathy. Doc Ophthalmol. 2000;101(2):165–77.

Article  Google Scholar 

Mourits MP, Suttorp-Schulten MS, Tijssen RO, Apkarian P. Contrast sensitivity and the diagnosis dysthyroid optic neuropathy. Doc Ophthalmol. 1990;74(4):329–35.

Article  CAS  Google Scholar 

Hallin ES, Feldon SE, Luttrell J. Graves’ ophthalmopathy: III. Effect of transantral orbital decompression on optic neuropathy. Br J Ophthalmol. 1988;72(9):683–7.

Article  CAS  Google Scholar 

Wei YH, Chi MC, Liao SL. Predictability of visual function and nerve fiber layer thickness by cross-sectional areas of extraocular muscles in Graves ophthalmopathy. Am J Ophthalmol. 2011;151(5):901–6.e1.

Article  Google Scholar 

Wu Y, Tu Y, Wu C, Bao L, Wang J, Lu F, et al. Reduced macular inner retinal thickness and microvascular density in the early stage of patients with dysthyroid optic neuropathy. Eye Vis (Lond). 2020;7:16.

Article  Google Scholar 

Zhang T, Xiao W, Ye H, Chen R, Mao Y, Yang H. Peripapillary and macular vessel density in dysthyroid optic neuropathy: an optical coherence tomography angiography study. Invest Ophthalmol Vis Sci. 2019;60(6):1863–9.

Article  Google Scholar 

Wu Y, Yang Q, Ding L, Tu Y, Deng X, Yang Y, et al. Peripapillary structural and microvascular alterations in early dysthyroid optic neuropathy. Eye Vis (Lond). 2022;9(1):30.

Article  Google Scholar 

Ye J, Liu W, Hu X, Jiang H, Xu M, Jin H, et al. Elevated pulse pressure correlated with reduced retinal peripapillary capillary in thyroid-associated ophthalmology with visual field defect. Front Endocrinol (Lausanne). 2022;13:941051.

Article  Google Scholar 

Bartalena L, Baldeschi L, Dickinson A, Eckstein A, Kendall-Taylor P, Marcocci C, et al. Consensus statement of the European Group on Graves’ orbitopathy (EUGOGO) on management of GO. Eur J Endocrinol. 2008;158(3):273–85.

Article  CAS  Google Scholar 

Barrett L, Glatt HJ, Burde RM, Gado MH. Optic nerve dysfunction in thyroid eye disease: CT. Radiology. 1988;167(2):503–7.

Article  CAS  Google Scholar 

Gorman CA. The measurement of change in Graves’ ophthalmopathy. Thyroid. 1998;8(6):539–43.

Article  CAS  Google Scholar 

Lesmes LA, Lu ZL, Baek J, Albright TD. Bayesian adaptive estimation of the contrast sensitivity function: the quick CSF method. J Vis. 2010;10(3):17.1-21.

Article  Google Scholar 

Dorr M, Lesmes LA, Lu ZL, Bex PJ. Rapid and reliable assessment of the contrast sensitivity function on an iPad. Invest Ophthalmol Vis Sci. 2013;54(12):7266–73.

Article  Google Scholar 

Metz CE, Herman BA, Shen JH. Maximum likelihood estimation of receiver operating characteristic (ROC) curves from continuously-distributed data. Stat Med. 1998;17(9):1033–53.

Article  CAS  Google Scholar 

Hou F, Lesmes LA, Kim W, Gu H, Pitt MA, Myung JI, et al. Evaluating the performance of the quick CSF method in detecting contrast sensitivity function changes. J Vis. 2016;16(6):18.

Article  Google Scholar 

Liu X, Wang Y, Ying X, Zhang F, Huang J, Yu H, et al. Contrast sensitivity is associated with chorioretinal thickness and vascular density of eyes in simple early-stage high myopia. Front Med (Lausanne). 2022;9:847817.

Article  Google Scholar 

Fatehi N, Nowroozizadeh S, Henry S, Coleman AL, Caprioli J, Nouri-Mahdavi K. Association of structural and functional measures with contrast sensitivity in glaucoma. Am J Ophthalmol. 2017;178:129–39.

Article  Google Scholar 

Mihailovic N, Lahme L, Rosenberger F, Hirscheider M, Termühlen J, Heiduschka P, et al. Altered retinal perfusion in patients with inactive Graves ophthalmopathy using optical coherence tomography angiography. Endocr Pract. 2020;26(3):312–7.

Article  Google Scholar 

Jamshidian Tehrani M, Mahdizad Z, Kasaei A, Fard MA. Early macular and peripapillary vasculature dropout in active thyroid eye disease. Graefes Arch Clin Exp Ophthalmol. 2019;257(11):2533–40.

Article  Google Scholar 

Kur J, Newman EA, Chan-Ling T. Cellular and physiological mechanisms underlying blood flow regulation in the retina and choroid in health and disease. Prog Retin Eye Res. 2012;31(5):377–406.

Article  CAS  Google Scholar 

Spaide RF, Fujimoto JG, Waheed NK, Sadda SR, Staurenghi G. Optical coherence tomography angiography. Prog Retin Eye Res. 2018;64:1–55.

Article  Google Scholar 

Ye L, Zhou SS, Yang WL, Bao J, Jiang N, Min YL, et al. Retinal microvasculature alteration in active thyroid-associated ophthalmopathy. Endocr Pract. 2018;24(7):658–67.

Article  Google Scholar 

Konuk O, Onaran Z, OzhanOktar S, Yucel C, Unal M. Intraocular pressure and superior ophthalmic vein blood flow velocity in Graves’ orbitopathy: relation with the clinical features. Graefes Arch Clin Exp Ophthalmol. 2009;247(11):1555–9.

Article  Google Scholar 

Monteiro MLR, Angotti-Neto H, Benabou JE, Betinjane AJ. Color Doppler imaging of the superior ophthalmic vein in different clinical forms of Graves’ orbitopathy. Jpn J Ophthalmol. 2008;52(6):483–8.

Article  Google Scholar 

Loiudice P, Pellegrini M, Marinò M, Mazzi B, Ionni I, Covello G, et al. Choroidal vascularity index in thyroid-associated ophthalmopathy: a cross-sectional study. Eye Vis (Lond). 2021;8(1):18.

Article  Google Scholar 

Del Noce C, Vagge A, Nicolò M, Traverso CE. Evaluation of choroidal thickness and choroidal vascular blood flow in patients with thyroid-associated orbitopathy (TAO) using SD-OCT and Angio-OCT. Graefes Arch Clin Exp Ophthalmol. 2020;258(5):1103–7.

Article  Google Scholar 

Blum Meirovitch S, Leibovitch I, Kesler A, Varssano D, Rosenblatt A, Neudorfer M. Retina and nerve fiber layer thickness in eyes with thyroid-associated ophthalmopathy. Isr Med Assoc J. 2017;19(5):277–81.

Google Scholar 

Wu Y, Tu Y, Bao L, Wu C, Zheng J, Wang J, et al. Reduced retinal microvascular density related to activity status and serum antibodies in patients with Graves’ ophthalmopathy. Curr Eye Res. 2020;45(5):576–84.

Article  Google Scholar 

Browning DJ, Glassman AR, Aiello LP, Beck RW, Brown DM, Fong DS, et al. Relationship between optical coherence tomography-measured central retinal thickness and visual acuity in diabetic macular edema. Ophthalmology. 2007;114(3):525–36.

Article  Google Scholar 

Berger M, Matlach J, Pitz S, Berres M, Axmacher F, Kahaly GJ, et al. Imaging of the medial rectus muscle predicts the development of optic neuropathy in thyroid eye disease. Sci Rep. 2022;12(1):6259.

Article  CAS  Google Scholar 

Weis E, Heran MK, Jhamb A, Chan AK, Chiu JP, Hurley MC, et al. Quantitative computed tomographic predictors of compressive optic neuropathy in patients with thyroid orbitopathy: a volumetric analysis. Ophthalmology. 2012;119(10):2174–8.

Article  Google Scholar 

Bontzos G, Papadaki E, Mazonakis M, Maris TG, Tsakalis NG, Drakonaki EE, et al. Extraocular muscle volumetry for assessment of thyroid eye disease. J Neuroophthalmol. 2022;42(1):e274–80.

Article  Google Scholar 

留言 (0)

沒有登入
gif