Pertussis toxin-induced inhibition of Wnt/β-catenin signaling in dendritic cells promotes an autoimmune response in experimental autoimmune uveitis

Zhong Z, Su G, Kijlstra A, Yang P. Activation of the interleukin-23/interleukin-17 signalling pathway in autoinflammatory and autoimmune uveitis. Prog Retin Eye Res. 2021;80:100866. https://doi.org/10.1016/j.preteyeres.2020.100866.

Article  CAS  Google Scholar 

Ke Y, Jiang G, Sun D, Kaplan HJ, Shao H. Anti-CD3 antibody ameliorates experimental autoimmune uveitis by inducing both IL-10 and TGF-beta dependent regulatory T cells. Clin Immunol. 2011;138:311–20. https://doi.org/10.1016/j.clim.2010.12.016.

Article  CAS  Google Scholar 

Christofi M, Le Sommer S, Mölzer C, Klaska IP, Kuffova L, Forrester JV. Low-dose 2-deoxy glucose stabilises tolerogenic dendritic cells and generates potent in vivo immunosuppressive effects. Cell Mol Life Sci. 2021;78:2857–76. https://doi.org/10.1007/s00018-020-03672-y.

Article  CAS  Google Scholar 

Heuss ND, Lehmann U, Norbury CC, McPherson SW, Gregerson DS. Local activation of dendritic cells alters the pathogenesis of autoimmune disease in the retina. J Immunol. 2012;188:1191–200. https://doi.org/10.4049/jimmunol.1101621.

Article  CAS  Google Scholar 

Sakoda Y, Nagai T, Murata S, Mizuno Y, Kurosawa H, Shoda H, et al. Pathogenic function of herpesvirus entry mediator in experimental autoimmune uveitis by induction of Th1- and Th17-type T cell responses. J Immunol. 2016;196:2947–54. https://doi.org/10.4049/jimmunol.1501742.

Article  CAS  Google Scholar 

Sinclair C, Bommakanti G, Gardinassi L, Loebbermann J, Johnson MJ, Hakimpour P, et al. mTOR regulates metabolic adaptation of APCs in the lung and controls the outcome of allergic inflammation. Science. 2017;357:1014–21. https://doi.org/10.1126/science.aaj2155.

Article  CAS  Google Scholar 

Roe MM, Hashimi M, Swain S, Woo KM, Bimczok D. p38 MAPK signaling mediates retinoic acid-induced CD103 expression in human dendritic cells. Immunology. 2020;161:230–44. https://doi.org/10.1111/imm.13246.

Article  CAS  Google Scholar 

Wang H, Hu X, Huang M, Liu J, Gu Y, Ma L, et al. Mettl3-mediated mRNA m6A methylation promotes dendritic cell activation. Nat Commun. 2019;10:1898. https://doi.org/10.1038/s41467-019-09903-6.

Article  CAS  Google Scholar 

Manicassamy S, Reizis B, Ravindran R, Nakaya H, Salazar-Gonzalez RM, Wang YC, et al. Activation of beta-catenin in dendritic cells regulates immunity versus tolerance in the intestine. Science. 2010;329:849–53. https://doi.org/10.1126/science.1188510.

Article  CAS  Google Scholar 

Manoharan I, Hong Y, Suryawanshi A, Angus-Hill ML, Sun Z, Mellor AL, et al. TLR2-dependent activation of beta-catenin pathway in dendritic cells induces regulatory responses and attenuates autoimmune inflammation. J Immunol. 2014;193:4203–13. https://doi.org/10.4049/jimmunol.1400614.

Article  CAS  Google Scholar 

Suryawanshi A, Manoharan I, Hong Y, Swafford D, Majumdar T, Taketo MM, et al. Canonical wnt signaling in dendritic cells regulates Th1/Th17 responses and suppresses autoimmune neuroinflammation. J Immunol. 2015;194:3295–304. https://doi.org/10.4049/jimmunol.1402691.

Article  CAS  Google Scholar 

Wang J, Wang Y, Zhang H, Chang J, Lu M, Gao W, et al. Identification of a novel microRNA-141-3p/Forkhead box C1/beta-catenin axis associated with rheumatoid arthritis synovial fibroblast function in vivo and in vitro. Theranostics. 2020;10:5412–34. https://doi.org/10.7150/thno.45214.

Article  CAS  Google Scholar 

Tan K, Xie X, Shi W, Miao L, Dong X, Yang W, et al. Deficiency of canonical Wnt/beta-catenin signalling in hepatic dendritic cells triggers autoimmune hepatitis. Liver Int. 2020;40:131–40. https://doi.org/10.1111/liv.14246.

Article  CAS  Google Scholar 

Tang S, Chen S, Huang B, Jiang J, Wen J, Deng Y. Deoxynivalenol induces inhibition of cell proliferation via the Wnt/beta-catenin signaling pathway. Biochem Pharmacol. 2019;166:12–22. https://doi.org/10.1016/j.bcp.2019.05.009.

Article  CAS  Google Scholar 

Draganova K, Zemke M, Zurkirchen L, Valenta T, Cantù C, Okoniewski M, et al. Wnt/beta-catenin signaling regulates sequential fate decisions of murine cortical precursor cells. Stem Cells. 2015;33:170–82. https://doi.org/10.1002/stem.1820.

Article  CAS  Google Scholar 

Kim JA, Kang YJ, Park G, Kim M, Park YO, Kim H, et al. Identification of a stroma-mediated Wnt/beta-catenin signal promoting self-renewal of hematopoietic stem cells in the stem cell niche. Stem Cells. 2009;27:1318–29. https://doi.org/10.1002/stem.52.

Article  CAS  Google Scholar 

Staal FJ, Luis TC, Tiemessen MM. WNT signalling in the immune system: WNT is spreading its wings. Nat Rev Immunol. 2008;8:581–93. https://doi.org/10.1038/nri2360.

Article  CAS  Google Scholar 

Swafford D, Manicassamy S. Wnt signaling in dendritic cells: its role in regulation of immunity and tolerance. Discov Med. 2015;19:303–10.

Google Scholar 

Reguart N, He B, Taron M, You L, Jablons DM, Rosell R. The role of Wnt signaling in cancer and stem cells. Future Oncol. 2005;1:787–97. https://doi.org/10.2217/14796694.1.6.787.

Article  CAS  Google Scholar 

Daniels DL, Weis WI. ICAT inhibits beta-catenin binding to Tcf/Lef-family transcription factors and the general coactivator p300 using independent structural modules. Mol Cell. 2002;10:573–84. https://doi.org/10.1016/s1097-2765(02)00631-7.

Article  CAS  Google Scholar 

Liu X, Zhang B, McBride JD, Zhou K, Lee K, Zhou Y, et al. Antiangiogenic and antineuroinflammatory effects of kallistatin through interactions with the canonical Wnt pathway. Diabetes. 2013;62:4228–38. https://doi.org/10.2337/db12-1710.

Article  CAS  Google Scholar 

Holbourn KP, Shone CC, Acharya KR. A family of killer toxins. Exploring the mechanism of ADP-ribosylating toxins. FEBS J. 2006;273:4579–93. https://doi.org/10.1111/j.1742-4658.2006.05442.x.

Article  CAS  Google Scholar 

Iwanami K, Matsumoto I, Tanaka Y, Inoue A, Goto D, Ito S, et al. Arthritogenic T cell epitope in glucose-6-phosphate isomerase-induced arthritis. Arthritis Res Ther. 2008;10:R130. https://doi.org/10.1186/ar2545.

Article  CAS  Google Scholar 

Agarwal RK, Sun SH, Su SB, Chan CC, Caspi RR. Pertussis toxin alters the innate and the adaptive immune responses in a pertussis-dependent model of autoimmunity. J Neuroimmunol. 2002;129:133–40. https://doi.org/10.1016/s0165-5728(02)00203-5.

Article  CAS  Google Scholar 

Su SB, Silver PB, Zhang M, Chan CC, Caspi RR. Pertussis toxin inhibits induction of tissue-specific autoimmune disease by disrupting G protein-coupled signals. J Immunol. 2001;167:250–6. https://doi.org/10.4049/jimmunol.167.1.250.

Article  CAS  Google Scholar 

Chen X, Shao H, Zhi Y, Xiao Q, Su C, Dong L, et al. CD73 pathway contributes to the immunosuppressive ability of mesenchymal stem cells in intraocular autoimmune responses. Stem Cells Dev. 2016;25:337–46. https://doi.org/10.1089/scd.2015.0227.

Article  CAS  Google Scholar 

Yun J, Xiao T, Zhou L, Beuerman RW, Li J, Zhao Y, et al. Local S100A8 levels correlate with recurrence of experimental autoimmune uveitis and promote pathogenic T cell activity. Invest Ophthalmol Vis Sci. 2018;59:1332–42. https://doi.org/10.1167/iovs.17-23127.

Article  CAS  Google Scholar 

Blanco P, Palucka AK, Pascual V, Banchereau J. Dendritic cells and cytokines in human inflammatory and autoimmune diseases. Cytokine Growth Factor Rev. 2008;19:41–52. https://doi.org/10.1016/j.cytogfr.2007.10.004.

Article  CAS  Google Scholar 

León B, Lund FE. Compartmentalization of dendritic cell and T-cell interactions in the lymph node: anatomy of T-cell fate decisions. Immunol Rev. 2019;289:84–100. https://doi.org/10.1111/imr.12758.

Article  CAS  Google Scholar 

Sato N, Meijer L, Skaltsounis L, Greengard P, Brivanlou AH. Maintenance of pluripotency in human and mouse embryonic stem cells through activation of Wnt signaling by a pharmacological GSK-3-specific inhibitor. Nat Med. 2004;10:55–63. https://doi.org/10.1038/nm979.

Article  CAS  Google Scholar 

Kerr EC, Copland DA, Dick AD, Nicholson LB. The dynamics of leukocyte infiltration in experimental autoimmune uveoretinitis. Prog Retin Eye Res. 2008;27:527–35. https://doi.org/10.1016/j.preteyeres.2008.07.001.

Article  CAS  Google Scholar 

Bora NS, Woon MD, Tandhasetti MT, Cirrito TP, Kaplan HJ. Induction of experimental autoimmune anterior uveitis by a self-antigen: melanin complex without adjuvant. Invest Ophthalmol Vis Sci. 1997;38:2171–5.

CAS  Google Scholar 

Mochizuki M, Sugita S, Kamoi K. Immunological homeostasis of the eye. Prog Retin Eye Res. 2013;33:10–27. https://doi.org/10.1016/j.preteyeres.2012.10.002.

Article  CAS  Google Scholar 

Grajewski RS, Hansen AM, Agarwal RK, Kronenberg M, Sidobre S, Su SB, et al. Activation of invariant NKT cells ameliorates experimental ocular autoimmunity by a mechanism involving innate IFN-gamma production and dampening of the adaptive Th1 and Th17 responses. J Immunol. 2008;181:4791–7. https://doi.org/10.4049/jimmunol.181.7.4791.

Article  CAS  Google Scholar 

Okunuki Y, Mukai R, Nakao T, Tabor SJ, Butovsky O, Dana R, et al. Retinal microglia initiate neuroinflammation in ocular autoimmunity. Proc Natl Acad Sci USA. 2019;116:9989–98. https://doi.org/10.1073/pnas.1820387116.

Article  CAS  Google Scholar 

Jia X, Hu M, Wang C, Wang C, Zhang F, Han Q, et al. Coordinated gene expression of Th17- and Treg-associated molecules correlated with resolution of the monophasic experimental autoimmune uveitis. Mol Vis. 2011;17:1493–507.

CAS  Google Scholar 

Orme JJ, Du Y, Vanarsa K, Wu T, Satterthwaite AB, Mohan C. Leukocyte beta-catenin expression is disturbed in systemic lupus erythematosus. PLoS ONE. 2016;11:e0161682. https://doi.org/10.1371/journal.pone.0161682.

Article  CAS  Google Scholar 

Osman A, Yan B, Li Y, Pavelko KD, Quandt J, Saadalla A, et al. TCF-1 controls Treg cell functions that regulate inflammation, CD8+ T cell cytotoxicity and severity of colon cancer. Nat Immunol. 2021;22:1152–62. https://doi.org/10.1038/s41590-021-00987-1.

Article  CAS  Google Scholar 

Van der Veeken J, Glasner A, Zhong Y, Hu W, Wang ZM, Bou-Puerto R, et al. The transcription factor Foxp3 shapes regulatory T cell identity by tuning the activity of trans-acting intermediaries. Immunity. 2020;53:971-984.e5. https://doi.org/10.1016/j.immuni.2020.10.010.

Article  CAS  Google Scholar 

Wang D, Fang J, Wen S, Li Q, Wang J, Yang L, et al. A comprehensive profile of TCF1+ progenitor and TCF1− terminally exhausted PD-1+ CD8+ T cells in head and neck squamous cell carcinoma: implications for prognosis and immunotherapy. Int J Oral Sci. 2022;14:8. https://doi.org/10.1038/s41368-022-00160-w.

Article 

留言 (0)

沒有登入
gif