Musculoskeletal Soft-tissue Masses

Soft-tissue tumors and tumorlike lesions: a systematic imaging approach.

Radiology. 253: 297-316Porrino J. Al-Dasuqi K. Irshaid L. et al.

Update of pediatric soft-tissue tumors with review of conventional MRI appearance-part 1: tumor-like lesions, adipocytic tumors, fibroblastic and myofibroblastic tumors, and perivascular tumors.

Skeletal Radiol. 51: 477-504Siegel R.L. Miller K.D. Jemal A.

Cancer statistics, 2018.

CA Cancer J Clin. 68: 7-30Bansal A. Goyal S. Goyal A. et al.

WHO classification of soft-tissue tumours 2020: An update and simplified approach for radiologists.

Eur J Radiol. 143: 109937

MRI of Muscular Neoplasms and Tumor-like Lesions: A 2020 World Health Organization Classification-based Systematic Review.

Semin Roentgenol. 57: 252-274Lakkaraju A. Sinha R. Garikipati R. et al.

Ultrasound for initial evaluation and triage of clinically suspicious soft-tissue masses.

Clin Radiol. 64: 615-621Goldman L.H. Perronne L. Alaia E.F. et al.

Does Magnetic Resonance Imaging After Diagnostic Ultrasound for Soft-tissue Masses Change Clinical Management?.

J Ultrasound Med. 40: 1515-1522Nagano S. Yahiro Y. Yokouchi M. et al.

Doppler ultrasound for diagnosis of soft-tissue sarcoma: efficacy of ultrasound-based screening score.

Radiol Oncol. 49: 135-140Tavare A.N. Alfuraih A.M. Hensor E.M.A. et al.

Shear-Wave Elastography of Benign versus Malignant Musculoskeletal Soft-Tissue Masses: Comparison with Conventional US and MRI.

Radiology. 290: 410-417Winn N. Baldwin J. Cassar-Pullicino V. et al.

Characterization of soft-tissue tumours with ultrasound, shear wave elastography and MRI.

Skeletal Radiol. 49: 869-881DiDomenico P. Middleton W.

Sonographic evaluation of palpable superficial masses.

Radiol Clin North Am. 52: 1295-1305

The Value of 3 Tesla Field Strength for Musculoskeletal Magnetic Resonance Imaging.

Invest Radiol. 56: 749-763Ahlawat S. Fritz J. Morris C.D. et al.

Magnetic resonance imaging biomarkers in musculoskeletal soft-tissue tumors: Review of conventional features and focus on nonmorphologic imaging.

J Magn Reson Imaging. 50: 11-27Del Grande F. Rashidi A. Luna R. et al.

Five-Minute Five-Sequence Knee MRI Using Combined Simultaneous Multislice and Parallel Imaging Acceleration: Comparison with 10-Minute Parallel Imaging Knee MRI.

Radiology. 299: 635-646Del Grande F. Guggenberger R. Fritz J.

Rapid Musculoskeletal MRI in 2021: Value and Optimized Use of Widely Accessible Techniques.

AJR Am J Roentgenol. 216: 704-717Khodarahmi I. Rajan S. Sterling R. et al.

Heating of Hip Arthroplasty Implants During Metal Artifact Reduction MRI at 1.5- and 3.0-T Field Strengths.

Invest Radiol. 56: 232-243Fritz J. Ahlawat S. Fritz B. et al.

10-Min 3D Turbo Spin Echo MRI of the Knee in Children: Arthroscopy-Validated Accuracy for the Diagnosis of Internal Derangement.

J Magn Reson Imaging. 49: e139-e151Fritz J. Fritz B. Zhang J. et al.

Simultaneous Multislice Accelerated Turbo Spin Echo Magnetic Resonance Imaging: Comparison and Combination With In-Plane Parallel Imaging Acceleration for High-Resolution Magnetic Resonance Imaging of the Knee.

Invest Radiol. 52: 529-537Fritz J. Guggenberger R. Del Grande F.

Rapid Musculoskeletal MRI in 2021: Clinical Application of Advanced Accelerated Techniques.

AJR Am J Roentgenol. 216: 718-733

AI-Driven Ultra-Fast Super-Resolution MRI: 10-Fold-Accelerated Musculoskeletal Turbo Spin Echo MRI Within Reach.

Invest Radiol. https://doi.org/10.1097/RLI.0000000000000928de Castro Luna R. Kumar N.M. Fritz J. et al.

MRI evaluation of soft-tissue tumors: comparison of a fast, isotropic, 3D T2-weighted fat-saturated sequence with a conventional 2D T2-weighted fat-saturated sequence for tumor characteristics, resolution, and acquisition time.

Eur Radiol. https://doi.org/10.1007/s00330-022-08937-7Luna R. Fritz J. Del Grande F. et al.

Determination of skeletal tumor extent: is an isotropic T1-weighted 3D sequence adequate?.

Eur Radiol. 31: 3138-3146Dalili D. Isaac A. Rashidi A. et al.

Image-guided Sports Medicine and Musculoskeletal Tumor Interventions: A Patient-Centered Model.

Semin Musculoskelet Radiol. 24: 290-309Del Grande F. Delcogliano M. Guglielmi R. et al.

Fully Automated 10-Minute 3D CAIPIRINHA SPACE TSE MRI of the Knee in Adults: A Multicenter, Multireader, Multifield-Strength Validation Study.

Invest Radiol. 53: 689-697Fritz J. Fritz B. Thawait G.G. et al.

Three-Dimensional CAIPIRINHA SPACE TSE for 5-Minute High-Resolution MRI of the Knee.

Invest Radiol. 51: 609-617Fritz J. Raithel E. Thawait G.K. et al.

Six-Fold Acceleration of High-Spatial Resolution 3D SPACE MRI of the Knee Through Incoherent k-Space Undersampling and Iterative Reconstruction-First Experience.

Invest Radiol. 51: 400-409Samim M. Khodarahmi I. Burke C. et al.

Postoperative Musculoskeletal Imaging and Interventions Following Hip Preservation Surgery, Deformity Correction, and Hip Arthroplasty.

Semin Musculoskelet Radiol. 26: 242-257Ahlawat S. Stern S.E. Belzberg A.J. et al.

High-resolution metal artifact reduction MR imaging of the lumbosacral plexus in patients with metallic implants.

Skeletal Radiol. 46: 897-908Fritz J. Ahlawat S. Demehri S. et al.

Compressed Sensing SEMAC: 8-fold Accelerated High Resolution Metal Artifact Reduction MRI of Cobalt-Chromium Knee Arthroplasty Implants.

Invest Radiol. 51: 666-676Fritz J. Fishman E.K. Corl F. et al.

Imaging of limb salvage surgery.

AJR Am J Roentgenol. 198: 647-660Fritz J. Fritz B. Thawait G.K. et al.

Advanced metal artifact reduction MRI of metal-on-metal hip resurfacing arthroplasty implants: compressed sensing acceleration enables the time-neutral use of SEMAC.

Skeletal Radiol. 45: 1345-1356Fritz J. Lurie B. Miller T.T.

Imaging of hip arthroplasty.

Semin Musculoskelet Radiol. 17: 316-327Fritz J. Lurie B. Miller T.T. et al.

MR imaging of hip arthroplasty implants.

Radiographics. 34: E106-E132Fritz J. Lurie B. Potter H.G.

MR Imaging of Knee Arthroplasty Implants.

Radiographics. 35: 1483-1501Khodarahmi I. Isaac A. Fishman E.K. et al.

Metal About the Hip and Artifact Reduction Techniques: From Basic Concepts to Advanced Imaging.

Semin Musculoskelet Radiol. 23: e68-e81Fayad L.M. Parekh V.S. de Castro Luna R. et al.

A Deep Learning System for Synthetic Knee Magnetic Resonance Imaging: Is Artificial Intelligence-Based Fat-Suppressed Imaging Feasible?.

Invest Radiol. 56: 357-368Kumar N.M. Fritz B. Stern S.E. et al.

Synthetic MRI of the Knee: Phantom Validation and Comparison with Conventional MRI.

Radiology. 289: 465-477

T2 Mapping without Additional Scan Time Using Synthetic Knee MRI.

Radiology. 293: 631-632Eck B.L. Yang M. Elia J. et al.

Quantitative MRI for Evaluation of Musculoskeletal Disease: Imaging Cartilage and Muscle Composition, Joint Inflammation and Biomechanics in Osteoarthritis.

Invest Radiol. https://doi.org/10.1097/RLI.0000000000000909Mazal A.T. Ashikyan O. Cheng J. et al.

Diffusion-weighted imaging and diffusion tensor imaging as adjuncts to conventional MRI for the diagnosis and management of peripheral nerve sheath tumors: current perspectives and future directions.

Eur Radiol. 29: 4123-4132Yun J.S. Lee M.H. Lee S.M. et al.

Peripheral nerve sheath tumor: differentiation of malignant from benign tumors with conventional and diffusion-weighted MRI.

Eur Radiol. 31: 1548-1557Chhabra A. Ashikyan O. Slepicka C. et al.

Conventional MR and diffusion-weighted imaging of musculoskeletal soft-tissue malignancy: correlation with histologic grading.

Eur Radiol. 29: 4485-4494Soldatos T. Ahlawat S. Montgomery E. et al.

Multiparametric Assessment of Treatment Response in High-Grade Soft-Tissue Sarcomas with Anatomic and Functional MR Imaging Sequences.

Radiology. 278: 831-840Costa F.M. Martins P.H. Canella C. et al.

Multiparametric MR Imaging of Soft-tissue Tumors and Pseudotumors.

Magn Reson Imaging Clin N Am. 26: 543-558

The 2020 WHO Classification of Tumors of Soft-tissue: Selected Changes and New Entities.

Adv Anat Pathol. 28: 44-58

Lipomas, lipoma variants, and well-differentiated liposarcomas (atypical lipomas): results of MRI evaluations of 126 consecutive fatty masses.

AJR Am J Roentgenol. 182: 733-739Nardo L. Abdelhafez Y.G. Acquafredda F. et al.

Qualitative evaluation of MRI features of lipoma and atypical lipomatous tumor: results from a multicenter study.

Skeletal Radiol. 49: 1005-1014Gupta P. Potti T.A. Wuertzer S.D. et al.

Spectrum of Fat-containing Soft-Tissue Masses at MR Imaging: The Common, the Uncommon, the Characteristic, and the Sometimes Confusing.

Radiographics. 36: 753-766Kransdorf M.J. Bancroft L.W. Peterson J.J. et al.

Imaging of fatty tumors: distinction of lipoma and well-differentiated liposarcoma.

Radiology. 224: 99-104

Imaging review of lipomatous musculoskeletal lesions.

Sicot j. 3: 34Goldblum J.R. Folpe A.L. Weiss S.W.

Enzinger & Weiss's soft-tissue tumors.

Seventh edition. Elsevier, Philadelphia, PARahmani G. McCarthy P. Bergin D.

The diagnostic accuracy of ultrasonography for soft-tissue lipomas: a systematic review.

Acta Radiol Open. 6 ()Van Treeck B.J. Fritchie K.J.

Updates in spindle cell/pleomorphic lipomas.

Semin Diagn Pathol. 36: 105-111

Malignant soft-tissue tumors in a large referral population: distribution of diagnoses by age, sex, and location.

AJR Am J Roentgenol. 164: 129-134Brisson M. Kashima T. Delaney D. et al.

MRI characteristics of lipoma and atypical lipomatous tumor/well-differentiated liposarcoma: retrospective comparison with histology and MDM2 gene amplification.

Skeletal Radiol. 42: 635-647Rosa F. Martinetti C. Piscopo F. et al.

Multimodality imaging features of desmoid tumors: a head-to-toe spectrum.

Insights Imaging. 11: 103Dahn I. Jonsson N. Lundh G.

DESMOID TUMOURS. A SERIES OF 33 CASES.

Acta Chir Scand. 126: 305-314

Extra-abdominal desmoid tumors; their differential diagnosis and treatment.

Arch Pathol (Chic). 45: 513-540Murphey M.D. Ruble C.M. Tyszko S.M. et al.

From the archives of the AFIP: musculoskeletal fibromatoses: radiologic-pathologic correlation.

Radiographics. 29: 2143-2173Vandevenne J.E. De Schepper A.M. De Beuckeleer L. et al.

New concepts in understanding evolution of desmoid tumors: MR imaging of 30 lesions.

Eur Radiol. 7: 1013-1019Kransdorf M.J. Murphey M.D.

Soft-tissue tumors: post-treatment imaging.

Radiol Clin North Am. 44: 463-472Walker E.A. Petscavage J.M. Brian P.L. et al.

Imaging features of superficial and deep fibromatoses in the adult population.

Sarcoma. 2012: 215810Romero J.A. Kim E.E. Kim C.G. et al.

Different biologic features of desmoid tumors in adult and juvenile patients: MR demonstration.

J Comput Assist Tomogr. 19: 782-787Kirchgesner T. Tamigneaux C. Acid S. et al.

Fasciae of the musculoskeletal system: MRI findings in trauma, infection and neoplastic diseases.

Insights into Imaging. 10: 47Kransdorf M.J. Meis-Kindblom J.M.

Dermatofibrosarcoma protuberans: radiologic appearance.

AJR Am J Roentgenol. 163: 391-394Demicco E.G. Wagner M.J. Maki R.G. et al.

Risk assessment in solitary fibrous tumors: validation and refinement of a risk stratification model.

Mod Pathol. 30: 1433-1442Salas S. Resseguier N. Blay J.Y. et al.

Prediction of local and metastatic recurrence in solitary fibrous tumor: construction of a risk calculator in a multicenter cohort from the French Sarcoma Group (FSG) database.

Ann Oncol. 28: 1979-1987Rosado-de-Christenson M.L. Abbott G.F. McAdams H.P. et al.

From the archives of the AFIP: Localized fibrous tumor of the pleura.

Radiographics. 23: 759-783Ginat D.T. Bokhari A. Bhatt S. et al.

Imaging features of solitary fibrous tumors.

AJR Am J Roentgenol. 196: 487-495Sbaraglia M. Bellan E. Dei Tos A.P.

The 2020 WHO Classification of Soft-tissue Tumours: news and perspectives.

Pathologica. 113: 70-84

Malignant fibrous histiocytoma: an analysis of 200 cases.

Cancer. 41: 2250-2266Ushijima M. Hashimoto H. Tsuneyoshi M. et al.

Giant cell tumor of the tendon sheath (nodular tenosynovitis). A study of 207 cases to compare the large joint group with the common digit group.

Cancer. 57: 875-884

Giant cell tumor of tendon sheath (localized nodular tenosynovitis).

Ann Plast Surg. 13: 205-210Kitagawa Y. Ito H. Amano Y. et al.

MR imaging for preoperative diagnosis and assessment of local tumor extent on localized giant cell tumor of tendon sheath.

Skeletal Radiol. 32: 633-638Wang C. Song R.R. Kuang P.D. et al.

Giant cell tumor of the tendon sheath: Magnetic resonance imaging findings in 38 patients.

Oncol Lett. 13: 4459-4462

Giant cell tumor of tendon sheath: spectrum of radiologic findings.

Skeletal Radiol. 21: 219-224Wan J.M. Magarelli N. Peh W.C. et al.

Imaging of giant cell tumour of the tendon sheath.

Radiol Med. 115: 141-151Middleton W.D. Patel V. Teefey S.A. et al.

Giant cell tumors of the tendon sheath: analysis of sonographic findings.

AJR Am J Roentgenol. 183: 337-339Dorwart R.H. Genant H.K. Johnston W.H. et al.

Pigmented villonodular synovitis of synovial joints: clinical, pathologic, and radiologic features.

AJR Am J Roentgenol. 143: 877-885Murphey M.D. Rhee J.H. Lewis R.B. et al.

Pigmented villonodular synovitis: radiologic-pathologic correlation.

Radiographics. 28: 1493-1518Al-Nakshabandi N.A. Ryan A.G. Choudur H. et al.

Pigmented villonodular synovitis.

Clin Radiol. 59: 414-420

The evolving classification of soft-tissue tumours - an update based on the new 2013 WHO classification.

Histopathology. 64: 2-11Hawnaur J.M. Whitehouse R.W. Jenkins J.P. et al.

Musculoskeletal haemangiomas: comparison of MRI with CT.

Skeletal Radiol. 19: 251-258Dubois J. Soulez G. Oliva V.L. et al.

Soft-tissue venous malformations in adult patients: imaging and therapeutic issues.

Radiographics. 21: 1519-1531Dubois J. Garel L. David M. et al.

Vascular soft-tissue tumors in infancy: distinguishing features on Doppler sonography.

AJR Am J Roentgenol. 178: 1541-1555Murphey M.D. Fairbairn K.J. Parman L.M. et al.

From the archives of the AFIP. Musculoskeletal angiomatous lesions: radiologic-pathologic correlation.

Radiographics. 15: 893-917Kransdorf M.J. Murphey M.D.

Imaging of Soft-Tissue Musculoskeletal Masses: Fundamental Concepts.

Radiographics. 36: 1931-1948Ryu Y.J. Choi Y.H. Cheon J.E. et al.

Imaging findings of Kaposiform Hemangioendothelioma in children.

Eur J Radiol. 86: 198-205Trehan S.K. Athanasian E.A. DiCarlo E.F. et al.

Characteristics of glomus tumors in the hand not diagnosed on magnetic resonance imaging.

J Hand Surg Am. 40: 542-545Mathis Jr., W.H. Schulz M.D.

Roentgen diagnosis of glomus tumors.

Radiology. 51: 71-76Smith J. Wisniewski S.J. Lee R.A.

Sonographic and clinical features of angioleiomyoma presenting as a painful Achilles tendon mass.

J Ultrasound Med. 25: 1365-1368Yoo H.J. Choi J.A. Chung J.H. et al.

Angioleiomyoma in soft-tissue of extremities: MRI findings.

AJR Am J Roentgenol. 192: W291-W294Lubbers P.R. Chandra R. Markle B.M. et al.

Case report 421: Calcified leiomyoma of the soft-tissues of the right buttock.

Skeletal Radiol. 16: 252-256

Benign Smooth Muscle Tumors (Leiomyomas) of Deep Somatic Soft-tissue.

Sarcoma. 2018: 2071394Chhabra A. Deshmukh S.D. Lutz A.M. et al.

Neuropathy Score Reporting and Data System (NS-RADS): MRI Reporting Guideline of Peripheral Neuropathy Explained and Reviewed.

Skeletal Radiol. 51: 1909-1922Reynolds Jr., D.L. Jacobson J.A. Inampudi P. et al.

Sonographic characteristics of peripheral nerve sheath tumors.

AJR Am J Roentgenol. 182: 741-744Alpert J.S. Boland P. Hameed M. et al.

Undifferentiated pleomorphic sarcoma: indolent, tail-like recurrence of a high-grade tumor.

Skeletal Radiol. 47: 141-144Chambers G. Kraft J. Kingston K.

The role of ultrasound as a problem-solving tool in the assessment of paediatric musculoskeletal injuries.

Ultrasound. 27: 6-19Chan L.P. Gee R. Keogh C. et al.

Imaging features of fat necrosis.

AJR Am J Roentgenol. 181: 955-959Abate M. Salini V. Rimondi E. et al.

Post traumatic myositis ossificans: Sonographic findings.

J Clin Ultrasound. 39: 135-140

Ultrasound of muscles.

Eur Radiol. 12: 35-43Boccalini S. Si-Mohamed S.A. Lacombe H. et al.

First In-Human Results of Computed Tomography Angiography for Coronary Stent Assessment With a Spectral Photon Counting Computed Tomography.

Invest Radiol. 57: 212-221Kolb M. Ekert K. Schneider L. et al.

The Utility of Shear-Wave Elastography in the Evaluation of Myositis.

Ultrasound Med Biol. 47: 2176-2185Kolb M. Peisen F. Ekert K. et al.

Shear Wave Elastography for Assessment of Muscular Abnormalities Related to Systemic Sclerosis.

Acad Radiol. 28: 1118-1124Pass B. Jafari M. Rowbotham E. et al.

Do quantitative and qualitative shear wave elastography have a role in evaluating musculoskeletal soft-tissue masses?.

Eur Radiol. 27: 723-731Fritz J. Kijowski R. Recht M.P.

Artificial intelligence in musculoskeletal imaging: a perspective on value propositions, clinical use, and obstacles.

Skeletal Radiol. 51: 239-243Wang B. Perronne L. Burke C. et al.

Artificial Intelligence for Classification of Soft-Tissue Masses at US.

Radiol Artif Intell. 3: e200125Gillies R.J. Kinahan P.E. Hricak H.

Radiomics: Images Are More than Pictures, They Are Data.

Radiology. 278: 563-577Fritz B. Yi P.H. Kijowski R. et al.

Radiomics and Deep Learning for Disease Detection in Musculoskeletal Radiology: An Overview of Novel MRI- and CT-Based Approaches.

Invest Radiol. https://doi.org/10.1097/RLI.0000000000000907Leporq B. Bouhamama A. Pilleul F. et al.

MRI-based radiomics to predict lipomatous soft-tissue tumors malignancy: a pilot study.

Cancer Imaging. 20: 78Burke C.J. Bencardino J. Adler R.

The Potential Use of Ultrasound-Magnetic Resonance Imaging Fusion Applications in Musculoskeletal Intervention.

J Ultrasound Med. 36: 217-224

留言 (0)

沒有登入
gif