Could senescence phenotypes strike the balance to promote tumor dormancy?

Perez-Mancera, P. A., Young, A. R., & Narita, M. (2014). Inside and out: The activities of senescence in cancer. Nature Reviews Cancer, 14(8), 547–558. https://doi.org/10.1038/nrc3773

Article  CAS  Google Scholar 

Herranz, N., & Gil, J. (2018). Mechanisms and functions of cellular senescence. The Journal of Clinical Investigation, 128(4), 1238–1246. https://doi.org/10.1172/JCI95148

Article  Google Scholar 

Roninson, I. B. (2003). Tumor cell senescence in cancer treatment. Cancer Research, 63(11), 2705–2715.

CAS  Google Scholar 

Hayflick, L. (1965). The limited in vitro lifetime of human diploid cell strains. Experimental Cell Research, 37, 614–636.

Article  CAS  Google Scholar 

Chang, B. D., Broude, E. V., Dokmanovic, M., Zhu, H., Ruth, A., Xuan, Y., et al. (1999). A senescence-like phenotype distinguishes tumor cells that undergo terminal proliferation arrest after exposure to anticancer agents. Cancer Research, 59(15), 3761–3767.

CAS  Google Scholar 

Shay, J. W., & Roninson, I. B. (2004). Hallmarks of senescence in carcinogenesis and cancer therapy. Oncogene, 23(16), 2919–2933. https://doi.org/10.1038/sj.onc.1207518

Article  CAS  Google Scholar 

Collado, M., & Serrano, M. (2010). Senescence in tumours: evidence from mice and humans. Nature Reviews Cancer, 10(1), 51–57, nrc2772 [pii] https://doi.org/10.1038/nrc2772.

Jackson, J. G., Post, S. M., & Lozano, G. (2011). Regulation of tissue- and stimulus-specific cell fate decisions by p53 in vivo. The Journal of Pathology, 223(2), 127–136. https://doi.org/10.1002/path.2783

Article  CAS  Google Scholar 

Smith, J. R., & Pereira-Smith, O. M. (1996). Replicative senescence: Implications for in vivo aging and tumor suppression. Science, 273(5271), 63–67.

Article  CAS  Google Scholar 

Ruhland, M. K., Coussens, L. M., & Stewart, S. A. (2016). Senescence and cancer: An evolving inflammatory paradox. Biochimica et Biophysica Acta, 1865(1), 14–22. https://doi.org/10.1016/j.bbcan.2015.10.001

Article  CAS  Google Scholar 

Tonnessen-Murray, C., Ungerleider, N. A., Rao, S. G., Wasylishen, A. R., Frey, W. D., & Jackson, J. G. (2018). p53 Mediates Vast Gene Expression Changes That Contribute to Poor Chemotherapeutic Response in a Mouse Model of Breast Cancer. Translational Oncology, 11(4), 930–940. https://doi.org/10.1016/j.tranon.2018.05.003

Article  Google Scholar 

Rao, S. G., & Jackson, J. G. (2016). SASP: Tumor Suppressor or Promoter? Yes! Trends in Cancer, 2(11), 676–687. https://doi.org/10.1016/j.trecan.2016.10.001

Article  Google Scholar 

Wiley, C. D., Sharma, R., Davis, S. S., Lopez-Dominguez, J. A., Mitchell, K. P., Wiley, S., et al. (2021). Oxylipin biosynthesis reinforces cellular senescence and allows detection of senolysis. Cell Metab, 33(6), 1124-1136 e1125. https://doi.org/10.1016/j.cmet.2021.03.008

Article  CAS  Google Scholar 

Tonnessen-Murray, C., Lozano, G., & Jackson, J. G. (2016). The p53 Protein: From Cell Regulation to Cancer. In G. Lozano, & A. J. Levine (Eds.), The p53 Protein: From Cell Regulation to Cancer (pp. 173–186, A Cold Spring Harbor Perspectives in Medicine Collection). Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.

Jackson, J. G., Pant, V., Li, Q., Chang, L. L., Quintas-Cardama, A., Garza, D., et al. (2012). p53-Mediated Senescence Impairs the Apoptotic Response to Chemotherapy and Clinical Outcome in Breast Cancer. Cancer Cell, 21(6), 793–806. https://doi.org/10.1016/j.ccr.2012.04.027

Article  CAS  Google Scholar 

Bertheau, P., Plassa, F., Espie, M., Turpin, E., de Roquancourt, A., Marty, M., et al. (2002). Effect of mutated TP53 on response of advanced breast cancers to high-dose chemotherapy. Lancet, 360(9336), 852–854, S0140–6736(02)09969–5 [pii] https://doi.org/10.1016/S0140-6736(02)09969-5.

Wang, Y., Xu, Y., Chen, J., Ouyang, T., Li, J., Wang, T., et al. (2016). TP53 mutations are associated with higher rates of pathologic complete response to anthracycline/cyclophosphamide-based neoadjuvant chemotherapy in operable primary breast cancer. International Journal of Cancer, 138(2), 489–496. https://doi.org/10.1002/ijc.29715

Article  CAS  Google Scholar 

Chen, M. B., Zhu, Y. Q., Xu, J. Y., Wang, L. Q., Liu, C. Y., Ji, Z. Y., et al. (2012). Value of TP53 status for predicting response to neoadjuvant chemotherapy in breast cancer: a meta-analysis. PLoS One, 7(6), e39655. https://doi.org/10.1371/journal.pone.0039655

Article  CAS  Google Scholar 

Esserman, L. J., Berry, D. A., Cheang, M. C., Yau, C., Perou, C. M., Carey, L., et al. (2012). Chemotherapy response and recurrence-free survival in neoadjuvant breast cancer depends on biomarker profiles: Results from the I-SPY 1 TRIAL (CALGB 150007/150012; ACRIN 6657). Breast Cancer Research and Treatment, 132(3), 1049–1062. https://doi.org/10.1007/s10549-011-1895-2

Article  CAS  Google Scholar 

Ungerleider, N. A., Rao, S. G., Shahbandi, A., Yee, D., Niu, T., Frey, W. D., et al. (2018). Breast cancer survival predicted by TP53 mutation status differs markedly depending on treatment. Breast Cancer Research, 20(1), 115. https://doi.org/10.1186/s13058-018-1044-5

Article  CAS  Google Scholar 

Shahbandi, A., Nguyen, H. D., & Jackson, J. G. (2020). TP53 Mutations and Outcomes in Breast Cancer: Reading beyond the Headlines. Trends Cancer, 6(2), 98–110. https://doi.org/10.1016/j.trecan.2020.01.007

Article  CAS  Google Scholar 

De Blander, H., Morel, A. P., Senaratne, A. P., Ouzounova, M., & Puisieux, A. (2021). Cellular Plasticity: A Route to Senescence Exit and Tumorigenesis. Cancers (Basel), 13(18), https://doi.org/10.3390/cancers13184561.

Zhu, P., Zhang, C., Gao, Y., Wu, F., Zhou, Y., & Wu, W. S. (2019). The transcription factor Slug represses p16(Ink4a) and regulates murine muscle stem cell aging. Nature Communications, 10(1), 2568. https://doi.org/10.1038/s41467-019-10479-4

Article  CAS  Google Scholar 

Nassour, J., Martien, S., Martin, N., Deruy, E., Tomellini, E., Malaquin, N., et al. (2016). Defective DNA single-strand break repair is responsible for senescence and neoplastic escape of epithelial cells. Nature Communications, 7, 10399. https://doi.org/10.1038/ncomms10399

Article  CAS  Google Scholar 

Beausejour, C. M., Krtolica, A., Galimi, F., Narita, M., Lowe, S. W., Yaswen, P., et al. (2003). Reversal of human cellular senescence: Roles of the p53 and p16 pathways. EMBO Journal, 22(16), 4212–4222. https://doi.org/10.1093/emboj/cdg417

Article  CAS  Google Scholar 

Roberson, R. S., Kussick, S. J., Vallieres, E., Chen, S. Y., & Wu, D. Y. (2005). Escape from therapy-induced accelerated cellular senescence in p53-null lung cancer cells and in human lung cancers. Cancer Research, 65(7), 2795–2803. https://doi.org/10.1158/0008-5472.CAN-04-1270

Article  CAS  Google Scholar 

Camorani, S., Cerchia, L., Fedele, M., Erba, E., D’Incalci, M., & Crescenzi, E. (2018). Trabectedin modulates the senescence-associated secretory phenotype and promotes cell death in senescent tumor cells by targeting NF-kappaB. Oncotarget, 9(28), 19929–19944. https://doi.org/10.18632/oncotarget.24961

Article  Google Scholar 

Olszewska, A., Borkowska, A., Granica, M., Karolczak, J., Zglinicki, B., Kieda, C., et al. (2021). Escape From Cisplatin-Induced Senescence of Hypoxic Lung Cancer Cells Can Be Overcome by Hydroxychloroquine. Front Oncol, 11, 738385. https://doi.org/10.3389/fonc.2021.738385

Article  Google Scholar 

Chakradeo, S., Elmore, L. W., & Gewirtz, D. A. (2016). Is Senescence Reversible? Current Drug Targets, 17(4), 460–466. https://doi.org/10.2174/1389450116666150825113500

Article  CAS  Google Scholar 

Duy, C., Li, M., Teater, M., Meydan, C., Garrett-Bakelman, F. E., Lee, T. C., et al. (2021). Chemotherapy Induces Senescence-Like Resilient Cells Capable of Initiating AML Recurrence. Cancer Discovery, 11(6), 1542–1561. https://doi.org/10.1158/2159-8290.CD-20-1375

Article  CAS  Google Scholar 

Saleh, T., Tyutyunyk-Massey, L., Murray, G. F., Alotaibi, M. R., Kawale, A. S., Elsayed, Z., et al. (2019). Tumor cell escape from therapy-induced senescence. Biochemical Pharmacology, 162, 202–212. https://doi.org/10.1016/j.bcp.2018.12.013

Article  CAS  Google Scholar 

Huang, B., Deo, D., Xia, M., & Vassilev, L. T. (2009). Pharmacologic p53 activation blocks cell cycle progression but fails to induce senescence in epithelial cancer cells. Molecular cancer research : MCR, 7(9), 1497–1509. https://doi.org/10.1158/1541-7786.MCR-09-0144

Article  CAS  Google Scholar 

Rehman, S. K., Haynes, J., Collignon, E., Brown, K. R., Wang, Y., Nixon, A. M. L., et al. (2021). Colorectal Cancer Cells Enter a Diapause-like DTP State to Survive Chemotherapy. Cell, 184(1), 226-242.e221. https://doi.org/10.1016/j.cell.2020.11.018

Article  CAS  Google Scholar 

Dhimolea, E., de Matos Simoes, R., Kansara, D., Al’Khafaji, A., Bouyssou, J., Weng, X., et al. (2021). An Embryonic Diapause-like Adaptation with Suppressed Myc Activity Enables Tumor Treatment Persistence. Cancer Cell, 39(2), 240-256.e211. https://doi.org/10.1016/j.ccell.2020.12.002

Article  CAS  Google Scholar 

Endo, H., & Inoue, M. (2019). Dormancy in cancer. Cancer Science, 110(2), 474–480. https://doi.org/10.1111/cas.13917

Article  CAS  Google Scholar 

Aguirre-Ghiso, J. A. (2007). Models, mechanisms and clinical evidence for cancer dormancy. Nature Reviews Cancer, 7(11), 834–846. https://doi.org/10.1038/nrc2256

Article  CAS  Google Scholar 

Santos-de-Frutos, K., & Djouder, N. (2021). When dormancy fuels tumour relapse. Commun Biol, 4(1), 747. https://doi.org/10.1038/s42003-021-02257-0

Article  Google Scholar 

Tonnessen-Murray, C. A., Frey, W. D., Rao, S. G., Shahbandi, A., Ungerleider, N. A., Olayiwola, J. O., et al. (2019). Chemotherapy-induced senescent cancer cells engulf other cells to enhance their survival. Journal of Cell Biology, 218(11), 3827–3844. https://doi.org/10.1083/jcb.201904051

Article  CAS  Google Scholar 

Frey, W. D., Anderson, A. Y., Lee, H., Nguyen, J. B., Cowles, E. L., Lu, H., et al. (2022). Phosphoinositide species and filamentous actin formation mediate engulfment by senescent tumor cells. PLoS Biol, 20(10), e3001858. https://doi.org/10.1371/journal.pbio.3001858

Article  CAS  Google Scholar 

Patel, N. H., Sohal, S. S., Manjili, M. H., Harrell, J. C., & Gewirtz, D. A. (2020). The Roles of Autophagy and Senescence in the Tumor Cell Response to Radiation. Radiation Research, 194(2), 103–115. https://doi.org/10.1667/RADE-20-00009

Article  CAS  Google Scholar 

Behmoaras, J., & Gil, J. (2021). Similarities and interplay between senescent cells and macrophages. J Cell Biol, 220(2), https://doi.org/10.1083/jcb.202010162.

Rodier, F. (2013). Detection of the senescence-associated secretory phenotype (SASP). Methods in Molecular Biology, 965, 165–173. https://doi.org/10.1007/978-1-62703-239-1_10

Article  CAS  Google Scholar 

Takasugi, M., Yoshida, Y., Hara, E., & Ohtani, N. (2022). The role of cellular senescence and SASP in tumour microenvironment. The FEBS Journal, febs.16381, https://doi.org/10.1111/febs.16381.

Krtolica, A., Parrinello, S., Lockett, S., Desprez, P. Y., & Campisi, J. (2001). Senescent fibroblasts promote epithelial cell growth and tumorigenesis: A link between cancer and aging. Proc Natl Acad Sci U S A, 98(21), 12072–12077. https://doi.org/10.1073/pnas.211053698211053698[pii]

Article  CAS  Google Scholar 

Coppe, J. P., Desprez, P. Y., Krtolica, A., & Campisi, J. (2010). The senescence-associated secretory phenotype: the dark side of tumor suppression. Annu Rev Pathol, 5, 99–118. https://doi.org/10.1146/annurev-pathol-121808-102144

Article  CAS  Google Scholar 

留言 (0)

沒有登入
gif