Human-specific genetics: new tools to explore the molecular and cellular basis of human evolution

Pääbo, S. The human condition — a molecular approach. Cell 157, 216–226 (2014).

Google Scholar 

Fan, S., Hansen, M. E. B., Lo, Y. & Tishkoff, S. A. Going global by adapting local: a review of recent human adaptation. Science 354, 54–59 (2016).

CAS  Google Scholar 

Rees, J. S., Castellano, S. & Andrés, A. M. The genomics of human local adaptation. Trends Genet. 36, 415–428 (2020).

CAS  Google Scholar 

Buckner, R. L. & Krienen, F. M. The evolution of distributed association networks in the human brain. Trends Cogn. Sci. 17, 648–665 (2013).

Google Scholar 

Sousa, A. M. M., Meyer, K. A., Santpere, G., Gulden, F. O. & Sestan, N. Evolution of the human nervous system function, structure, and development. Cell 170, 226–247 (2017).

CAS  Google Scholar 

Rilling, J. K., Glasser, M. F., Jbabdi, S., Andersson, J. & Preuss, T. M. Continuity, divergence, and the evolution of brain language pathways. Front. Evol. Neurosci. 3, 11 (2011).

Google Scholar 

Simonyan, K. The laryngeal motor cortex: its organization and connectivity. Curr. Opin. Neurobiol. 28, 15–21 (2014).

CAS  Google Scholar 

MacLean, E. L. Unraveling the evolution of uniquely human cognition. Proc. Natl Acad. Sci. USA 113, 6348–6354 (2016).

CAS  Google Scholar 

Mace, R. Evolutionary ecology of human life history. Anim. Behav. 59, 1–10 (2000).

CAS  Google Scholar 

Vick, S.-J., Waller, B. M., Parr, L. A., Smith Pasqualini, M. C. & Bard, K. A. A cross-species comparison of facial morphology and movement in humans and chimpanzees using the facial action coding system (FACS). J. Nonverbal Behav. 31, 1–20 (2007).

Google Scholar 

Crouch, D. J. M. et al. Genetics of the human face: identification of large-effect single gene variants. Proc. Natl Acad. Sci. USA 115, E676–E685 (2018).

CAS  Google Scholar 

Kobayashi, H. & Kohshima, S. Unique morphology of the human eye. Nature 387, 767–768 (1997).

CAS  Google Scholar 

Caspar, K. R., Biggemann, M., Geissmann, T. & Begall, S. Ocular pigmentation in humans, great apes, and gibbons is not suggestive of communicative functions. Sci. Rep. 11, 12994 (2021).

CAS  Google Scholar 

Darwin, C. The Descent of Man, and Selection in Relation to Sex. vol. 1, 423 (John Murray, 1871).

Harcourt-Smith, W. E. H. & Aiello, L. C. Fossils, feet and the evolution of human bipedal locomotion. J. Anat. 204, 403–416 (2004).

CAS  Google Scholar 

Sockol, M. D., Raichlen, D. A. & Pontzer, H. Chimpanzee locomotor energetics and the origin of human bipedalism. Proc. Natl Acad. Sci. USA 104, 12265–12269 (2007).

CAS  Google Scholar 

Roach, N. T., Venkadesan, M., Rainbow, M. J. & Lieberman, D. E. Elastic energy storage in the shoulder and the evolution of high-speed throwing in Homo. Nature 498, 483–486 (2013).

CAS  Google Scholar 

Zihlman, A. L. & Bolter, D. R. Body composition in Pan paniscus compared with Homo sapiens has implications for changes during human evolution. Proc. Natl Acad. Sci. USA 112, 7466–7471 (2015).

CAS  Google Scholar 

Rosenberg, K. R. The evolution of modern human childbirth. Am. J. Phys. Anthropol. 35, 89–124 (1992).

Google Scholar 

Gruss, L. T. & Schmitt, D. The evolution of the human pelvis: changing adaptations to bipedalism, obstetrics and thermoregulation. Philos. Trans. R. Soc. Lond. B Biol. Sci. 370, 20140063 (2015).

Google Scholar 

Aiello, L. C. & Wheeler, P. The expensive-tissue hypothesis: the brain and the digestive system in human and primate evolution. Curr. Anthropol. 36, 199–221 (1995).

Google Scholar 

Milton, K. in Food and Evolution: Toward a Theory of Human Food Habits (eds Harris, M. & Ross, E. B.) 93–115 (Temple Univ. Press 1987).

Milton, K. Nutritional characteristics of wild primate foods: do the diets of our closest living relatives have lessons for us? Nutrition 15, 488–498 (1999).

CAS  Google Scholar 

Tishkoff, S. A. et al. Convergent adaptation of human lactase persistence in Africa and Europe. Nat. Genet. 39, 31–40 (2007).

CAS  Google Scholar 

Perry, G. H. et al. Diet and the evolution of human amylase gene copy number variation. Nat. Genet. 39, 1256–1260 (2007).

CAS  Google Scholar 

Dannemann, M., Andrés, A. M. & Kelso, J. Introgression of neandertal- and denisovan-like haplotypes contributes to adaptive variation in human toll-like receptors. Am. J. Hum. Genet. 98, 22–33 (2016).

CAS  Google Scholar 

Enard, D. & Petrov, D. A. Evidence that RNA viruses drove adaptive introgression between neanderthals and modern humans. Cell 175, 360–371.e13 (2018).

CAS  Google Scholar 

Domínguez-Andrés, J. & Netea, M. G. Impact of historic migrations and evolutionary processes on human immunity. Trends Immunol. 40, 1105–1119 (2019).

Google Scholar 

Khan, N. et al. Multiple genomic events altering hominin SIGLEC biology and innate immunity predated the common ancestor of humans and archaic hominin. Genome Biol. Evol. 12, 1040–1050 (2020).

CAS  Google Scholar 

Hublin, J.-J. et al. New fossils from Jebel Irhoud, Morocco and the pan-African origin of Homo sapiens. Nature 546, 289–292 (2017).

CAS  Google Scholar 

Stringer, C. Modern human origins: progress and prospects. Philos. Trans. R. Soc. Lond. B Biol. Sci. 357, 563–579 (2002).

Google Scholar 

Hublin, J.-J. in Neandertals and Modern Humans in Western Asia (eds Akazawa, T., Aoki, K. & Bar-Yosef, O.) 295–310 (Kluwer Academic Publishers, 2005).

Simonti, C. N. et al. The phenotypic legacy of admixture between modern humans and Neandertals. Science 351, 737–741 (2016).

CAS  Google Scholar 

Dannemann, M. & Kelso, J. The contribution of Neanderthals to phenotypic variation in modern humans. Am. J. Hum. Genet. 101, 578–589 (2017).

CAS  Google Scholar 

Benton, M. L. et al. The influence of evolutionary history on human health and disease. Nat. Rev. Genet. 22, 269–283 (2021).

CAS  Google Scholar 

Orr, H. A. The genetic theory of adaptation: a brief history. Nat. Rev. Genet. 6, 119–127 (2005).

CAS  Google Scholar 

Richard, D. et al. Evolutionary selection and constraint on human knee chondrocyte regulation impacts osteoarthritis risk. Cell 181, 362–381.e28 (2020). This study brings together evolutionary signatures, functional genomics and mouse experiments to reveal how a positively selected haplotype for height also includes a mutation that confers osteoarthritis risk, establishing links between the molecular basis of human phenotype change and modern disease risk.

CAS  Google Scholar 

Marques-Bonet, T. et al. A burst of segmental duplications in the genome of the African great ape ancestor. Nature 457, 877–881 (2009).

CAS  Google Scholar 

Dennis, M. Y. et al. The evolution and population diversity of human-specific segmental duplications. Nat. Ecol. Evol. 1, 69 (2017). This study uses deep sequencing of human and great ape genomes to define 218 human-specific segmental duplications, to determine the evolutionary timing of these mutations and to identify gene families with constrained copy number in humans indicative of new functions.

Google Scholar 

Vollger, M. R. et al. Segmental duplications and their variation in a complete human genome. Science 376, eabj6965 (2022).

CAS  Google Scholar 

Hsieh, P. et al. Evidence for opposing selective forces operating on human-specific duplicated TCAF genes in Neanderthals and humans. Nat. Commun. 12, 5118 (2021).

CAS  Google Scholar 

Crespi, B., Summers, K. & Dorus, S. Adaptive evolution of genes underlying schizophrenia. Proc. Biol. Sci. 274, 2801–2810 (2007).

CAS  Google Scholar 

Doan, R. N. et al. Mutations in human accelerated regions disrupt cognition and social behavior. Cell 167, 341–354.e12 (2016).

CAS  Google Scholar 

Song, J. H. T., Lowe, C. B. & Kingsley, D. M. Characterization of a human-specific tandem repeat associated with bipolar disorder and schizophrenia. Am. J. Hum. Genet. 103, 421–430 (2018). This study identifies a human-specific variable number tandem repeat with neurodevelopmental enhancer activity that separates humans from the other great apes, but is also variable within the human population and associated with bipolar disorder, highlighting a recently evolved genomic change linked to human vulnerabilities.

CAS  Google Scholar 

Chimpanzee Sequencing and Analysis Consortium. Initial sequence of the chimpanzee genome and comparison with the human genome. Nature 437, 69–87 (2005).

Google Scholar 

Kronenberg, Z. N. et al. High-resolution comparative analysis of great ape genomes. Science 360, eaar6343 (2018). This study uses long-read sequencing to produce ape genome assemblies not guided by the human reference genome to systematically identify structural genomic variation across apes.

Google Scholar 

Prüfer, K. et al. The bonobo genome compared with the chimpanzee and human genomes. Nature 486, 527–531 (2012). This study reports a complete bonobo genome and by comparison with human and chimpanzee genomes, highlights the portions of the human genome that are closer to either chimpanzee or bonobo than these are to each other by ILS.

Google Scholar 

Mao, Y. et al. A high-quality bonobo genome refines the analysis of hominid evolution. Nature 594, 77–81 (2021).

CAS  Google Scholar 

Scally, A. et al. Insights into hominid evolution from the gorilla genome sequence. Nature 483, 169–175 (2012).

CAS  Google Scholar 

Gordon, D. et al. Long-read sequence assembly of the gorilla genome. Science 352, aae0344 (2016).

Google Scholar 

Locke, D. P. et al. Comparative and demographic analysis of orang-utan genomes. Nature 469, 529–533 (2011).

CAS  Google Scholar 

Nater, A. et al. Morphometric, behavioral, and genomic evidence for a new orangutan species. Curr. Biol. 27, 3487–3498.e10 (2017).

CAS  Google Scholar 

Wildman, D. E., Uddin, M., Liu, G., Grossman, L. I. & Goodman, M. Implications of natural selection in shaping 99.4% nonsynonymous DNA identity between humans and chimpanzees: enlarging genus Homo. Proc. Natl Acad. Sci. USA 100, 7181–7188 (2003).

CAS  Google Scholar 

Suntsova, M. V. & Buzdin, A. A. Differences between human and chimpanzee genomes and their implications in gene expression, protein functions and biochemical properties of the two species. BMC Genomics 21, 535 (2020).

CAS  Google Scholar 

Moorjani, P., Amorim, C. E. G., Arndt, P. F. & Przeworski, M. Variation in the molecular clock of primates. Proc. Natl Acad. Sci. USA 113, 10607–10612 (2016).

CAS  Google Scholar 

Carroll, S. B. Evolution at two levels: on genes and form. PLoS Biol. 3, e245 (2005).

Google Scholar 

Zuckerkandl, E. Controller-gene diseases: the operon model as applied to beta-thalassemia, familial fetal hemoglobinemia and the normal switch from the production of fetal hemoglobin to that of adult hemoglobin. J. Mol. Biol. 8, 128–147 (1964).

CAS  Google Scholar 

Wray, G. A. The evolutionary significance of cis-regulatory mutations. Nat. Rev. Genet. 8, 206–216 (2007).

CAS  Google Scholar 

Yunis, J. J., Sawyer, J. R. & Dunham, K. The striking resemblance of high-resolution G-banded chromosomes of man and chimpanzee. Science 208, 1145–1148 (1980).

CAS  Google Scholar 

Meyer, M. et al. A high-coverage genome sequence from an archaic Denisovan individual. Science 338, 222–226 (2012).

CAS  Google Scholar 

Fiddes, I. T., Pollen, A. A., Davis, J. M. & Sikela, J. M. Paired involvement of human-specific Olduvai domains and NOTCH2NL genes in human brain evolution. Hum. Genet. 138, 715–721 (2019).

CAS  Google Scholar 

Vandepoele, K., Van Roy, N., Staes, K., Speleman, F. & van Roy, F. A novel gene family NBPF: intricate structure generated by gene duplications during primate evolution. Mol. Biol. Evol. 22, 2265–2274 (2005).

CAS 

留言 (0)

沒有登入
gif