Comparison of dynamic defocus curve on cataract patients implanting extended depth of focus and monofocal intraocular lens

Participants

The study was prospective cohort research on defocused dynamic VA in age-related cataract patients. The research was reviewed and approved by the Ethics Committee of Peking University Third Hospital (No. LM2021197) and was performed in accordance with the Declaration of Helsinki. Written informed consent was obtained from each participant. The selected IOLs were either TECNIS Symfony IOL (ZXR00, Johnson & Johnson Vision, Inc., Santa Ana, CA, USA) or one-piece acrylic monofocal aspheric IOLs [A1-UV, Eyebright Medical Technology (Beijing) Co., Ltd., Beijing, China; SZ-1, NIDEK Co., Ltd., Aichi, Japan; Aqua-Sense PAL, Aaren Scientific, Inc., Ontario, CA, USA; Aspira-aA, HumanOptics Aktiengesellschaft, Erlangen, Germany; 868UV, U.S. IOL, Inc., Lexington, KY, USA].

Inclusion criteria included continuous patients aged 50–80 years, diagnosed with binocular age-related cataracts and scheduled for bilateral cataract surgery with phacoemulsification and IOL implantation of EDOF or monofocal IOL. Patients were excluded from the study if they had high myopia (≤ − 6.00 D), high corneal astigmatism (≥ 2.00 D), history of intraocular surgery, vestibular dysfunction, congenital disorders, and underlying ocular diseases such as corneal diseases, retinopathy and glaucoma. The patients whose postoperative corrected distance VA (CDVA) of either eye worse than 0.1 logMAR were also excluded.

Clinical evaluation

Demographic information, including name, age, sex and medical history was collected before the surgery. The preoperative ophthalmic evaluation included uncorrected distance VA (UDVA, standard logMAR VA chart), non-contact tonometry, slit lamp examination, non-mydriatic fundus photography, ocular biometry (IOL Master 700, Carl Zeiss Meditec AG, Jena, Germany), corneal topography (Pentacam, OCULUS Optikgeräte GmbH, Wetzlar, Germany), optical coherence tomography (Heidelberg Engineering GmbH, Heidelberg, Germany) and noncontact specular microscope (Nidek CEM-530, NIDEK Co., Ltd., Aichi, Japan).

Routine postoperative visits at one day and one week included the measurement of UDVA, non-contact tonometry and slit-lamp biomicroscopy. Postoperative examinations performed at 1 month ± 5 days following the cataract surgery included the measurement of UDVA and CDVA (5 m), uncorrected intermediate VA (UIVA, 80 cm), uncorrected near VA (UNVA, 40 cm), binocular static defocus curve test and dynamic defocus curve test.

Static and dynamic defocus curve test

The binocular static defocus curve test was conducted based on CDVA. The patients wore glasses to correct the residual refractive error before the test. Additional lenses were added binocularly from + 1.0 D to − 3.0 D at a step of 0.5 D for defocusing. Patients were required to identify the optotypes on the logMAR VA chart at 5 m.

The binocular dynamic defocus curve test has been described in detail in our previous report [12]. Briefly, the examination was based on CDVA. The horizontally moving optotypes presented on a screen were generated by a self-designed program using MATLAB 2017b (The MathWorks, Inc., Natick, MA, USA). The configuration and size of the optotypes were designed according to the standard logMAR VA chart. The velocity was set at 40 degrees per second according to the previous study [12]. Patients were required to sit at 3 m in front of the screen and located their eye level at the middle of the screen. During the test, the letter E with random direction moved horizontally from the left side to the right side in the middle of the screen. The patients were asked to state the opening direction of the dynamic optotypes. We recorded the minimal size (logMAR) that the subjects could recognize, and the test was performed under different defocus statuses. Defocused lenses were added in the same way as the static defocus curve test. A spline curve was fitted to the static and dynamic defocus data [13].

The corrected dynamic vision accommodation was calculated based on the dynamic defocus curve. It was defined as the diopter range in which the patient’s dynamic VA was within the dynamic VA of 0.0 D plus 0.1 divided by the dynamic VA of 0.0 D. The elaboration can be found in our previous study [12].

Surgical procedures

All surgeries were performed by experienced ophthalmologists (QWQ and LXM) from Peking University Third Hospital using standard phacoemulsification and implantation of IOL. Topical anesthesia was given after routine disinfection. The 3.2 mm main incision was performed at 135 degrees and the viscoelastic agent was injected into the anterior chamber afterward. The clear corneal assisted incision was performed at 45 degrees. Continuous curvilinear capsulorhexis 5–5.5 mm in diameter was conducted with capsulorhexis forceps. Balanced salt solution was injected into the lens for hydrodissection and hydrodelineation. Subsequently, coaxial phacoemulsification was applied followed by irrigation/aspiration to remove the cataractous lens. The selected IOL was inserted into the capsule through the main incision.

Statistical analysis

Statistical analysis was operated with SPSS (version 26.0, IBM Corp., Armonk, NY, USA). The Kolmogorov-Smirnov test was applied to check the normal distribution of the data. Continuous variables were represented as means ± standard deviation (SD). Defocus curves were plotted with GraphPad Prism (version 9.0.0, GraphPad Software, San Diego, CA, USA), and the calculation of the area under the curve (AUC) using the trapezoidal rule [13] was accomplished with the same software. The comparisons of UDVA, CDVA, UIVA, UNVA, defocused dynamic VA, AUC, corrected dynamic vision accommodation and the difference value of defocused dynamic and static VA between the two groups were accomplished by the Mann-Whitney U test or independent t-test according to the normality of data. The UDVA before and after surgery were compared by the paired t-test. The correlation between the dynamic and static VA, the difference value and defocus status within each group was analyzed using Pearson or Spearman correlation analysis. Additionally, we established a stepwise multivariate linear regression model to assess the influential factors. Collinearity analysis was implemented first. If the variance inflation factor was over 5, the factors would be considered to have multicollinearity and one of them would be excluded from the model based on clinical significance. The stepwise multivariate linear regression analysis was then applied. The inclusion criterion was F ≤ 0.05 and the exclusion criterion was F ≥ 0.1. P < 0.05 was considered statistically significant.

留言 (0)

沒有登入
gif