Newly discovered roles of triosephosphate isomerase including functions within the nucleus

Cabrera N, Torres-Larios A, Garcia-Torres I, Enriquez-Flores S, Perez-Montfort R. Differential effects on enzyme stability and kinetic parameters of mutants related to human triosephosphate isomerase deficiency. Biochim Biophys Acta Gen Subj. 2018;1862(6):1401–9. https://doi.org/10.1016/j.bbagen.2018.03.019.

Article  CAS  Google Scholar 

Chen Y, Li Q, Li Q, Xing S, Liu Y, Liu Y, et al. p62/SQSTM1, a central but unexploited target: advances in its physiological/pathogenic functions and small molecular modulators. J Med Chem. 2020;63:10135–57. https://doi.org/10.1021/acs.jmedchem.9b02038.

Article  CAS  Google Scholar 

Daniel B, Livne A, Cohen G, Kahremany S, Sasson S. Endothelial cell-derived triosephosphate isomerase attenuates insulin secretion from pancreatic beta cells of male rats. Endocrinology. 2021. https://doi.org/10.1210/endocr/bqaa234.

Article  Google Scholar 

Figueroa-Angulo EE, Estrella-Hernandez P, Salgado-Lugo H, Ochoa-Leyva A, Gomez Puyou A, Campos SS, et al. Cellular and biochemical characterization of two closely related triosephosphate isomerases from Trichomonas vaginalis. Parasitology. 2012;139(13):1729–38. https://doi.org/10.1017/S003118201200114X.

Article  CAS  Google Scholar 

Freedman R. Moonlighting molecules. New Sci. 1978;72:560–1.

Google Scholar 

Gancedo C, Flores CL, Gancedo JM. The expanding landscape of moonlighting proteins in yeasts. Microbiol Mol Biol Rev. 2016;80(3):765–77. https://doi.org/10.1128/MMBR.00012-16.

Article  CAS  Google Scholar 

Guix FX, Ill-Raga G, Bravo R, Nakaya T, de Fabritiis G, Coma M, et al. Amyloid-dependent triosephosphate isomerase nitrotyrosination induces glycation and tau fibrillation. Brain. 2009;132(5):1335–45. https://doi.org/10.1093/brain/awp023.

Article  Google Scholar 

Hrizo SL, Eicher SL, Myers TD, McGrath I, Wodrich APK, Venkatesh H, et al. Identification of protein quality control regulators using a Drosophila model of TPI deficiency. Neurobiol Dis. 2021;152:105299. https://doi.org/10.1016/j.nbd.2021.105299.

Article  CAS  Google Scholar 

Huberts DH, van der Klei IJ. Moonlighting proteins: an intriguing mode of multitasking. Biochim Biophys Acta. 2010;1803(4):520–5. https://doi.org/10.1016/j.bbamcr.2010.01.022.

Article  CAS  Google Scholar 

Jin X, Wang D, Lei M, Guo Y, Cui Y, Chen F, et al. TPI1 activates the PI3K/AKT/mTOR signaling pathway to induce breast cancer progression by stabilizing CDCA5. J Transl Med. 2022;20(1):191. https://doi.org/10.1186/s12967-022-03370-2.

Article  CAS  Google Scholar 

Jung J, Yoon T, Choi EC, Lee K. Interaction of cofilin with triose-phosphate isomerase contributes glycolytic fuel for Na, K-ATPase via Rho-mediated signalint pathway. J Biol Chem. 2002;277(50):48931–7. https://doi.org/10.1074/jbc.M208806200.

Article  CAS  Google Scholar 

Knowles JR, Albery WJ. Perfection in enzyme catalysis: the energetics of triosephosphate isomerase. Acc Chem Res. 1977;10(4):7. https://doi.org/10.1021/ar50112a001.

Article  Google Scholar 

Liu P, Sun SJ, Ai YJ, Feng X, Zheng YM, Gao Y, et al. Elevated nuclear localization of glycolytic enzyme TPI1 promotes lung adenocarcinoma and enhances chemoresistance. Cell Death Dis. 2022;13(3):205. https://doi.org/10.1038/s41419-022-04655-6.

Article  CAS  Google Scholar 

Lodi PJ, Chang LC, Knowles JR, Komives EA. Triosephosphate isomerase requires a positively charged active site: the role of lysine-12. Biochemistry. 1994;33(10):2809–14. https://doi.org/10.1021/bi00176a009.

Article  CAS  Google Scholar 

Murugesan SN, Yadav BS, Maurya PK, Chaudhary A, Singh S, Mani A. Expression and network analysis of YBX1 interactors for identification of new drug targets in lung adenocarcinoma. J Genomics. 2018;6:103–12. https://doi.org/10.7150/jgen.20581.

Article  Google Scholar 

Myers TD, Ferguson C, Gliniak E, Homanics GE, Palladino MJ. Murine model of triosephosphate isomerase deficiency with anemia and severe neuromuscular dysfunction. Curr Res Neurobiol. 2022. https://doi.org/10.1016/j.crneur.2022.100062.

Article  Google Scholar 

Olivares-Illana V, Riveros-Rosas H, Cabrera N, Tuena de Gómez-Puyou M, Pérez-Montfort R, Costas M, et al. A guide to the effects of a large portion of the residues of triosephosphate isomerase on catalysis, stability, druggability, and human disease. Proteins. 2017;85(7):1190–211. https://doi.org/10.1002/prot.25299.

Article  CAS  Google Scholar 

Orosz F, Wagner G, Liliom K, Kovacs J, Baroti K, Horanyi, et al. Enhanced association of mutant triosephosphate isomerase to red cell membranes and to brain microtubules. Proc Natl Acad Sci USA. 2000;97(3):1026–31. https://doi.org/10.1073/pnas.97.3.1026.

Article  CAS  Google Scholar 

Orosz F, Olah J, Alvarez M, Keseru GM, Szabo B, Wagner G, et al. Distinct behavior of mutant triosephosphate isomerase in hemolysate and in isolated form: molecular basis of enzyme deficiency. Blood. 2001;98(10):3106–12. https://doi.org/10.1182/blood.V98.10.3106.

Article  CAS  Google Scholar 

Orosz F, Olah J, Ovadi J. Triosephosphate isomerase deficiency: new insights into an enigmatic disease. Biochim Biophys Acta. 2009;1792(12):1168–74. https://doi.org/10.1016/j.bbadis.2009.09.012.

Article  CAS  Google Scholar 

Orozco JM, Krawczyk PA, Scaria SM, Cangelosi AL, Chan SH, Kunchok T, et al. Dihydroxyacetone phosphate signals glucose availability to mTORC1. Nat Metab. 2020;2(9):893–901. https://doi.org/10.1038/s42255-020-0250-5.

Article  CAS  Google Scholar 

Piatigorsky J, Wistow GJ. Enzyme/crystallins: gene sharing as an evolutionary strategy. Cell. 1989;57(2):197–9. https://doi.org/10.1016/0092-8674(89)90956-2.

Article  CAS  Google Scholar 

Piatigorsky J, O’Brien WE, Norman BL, Kalumuck K, Wistow GJ, Borras T, et al. Gene sharing by delta-crystallin and argininosuccinate lyase. Proc Natl Acad Sci USA. 1988;85(10):3479–83. https://doi.org/10.1073/pnas.85.10.3479.

Article  CAS  Google Scholar 

Reynolds SJ, Yates DW, Pogson CI. Dihydroxyacetone phosphate. Its structure and reactivity with -glycerophosphate dehydrogenase, aldolase and triose phosphate isomerase and some possible metabolic implications. Biochem J. 1971;122(3):285–97. https://doi.org/10.1042/bj1220285.

Article  CAS  Google Scholar 

Rodriguez-Almazan C, Arreola R, Rodriguez-Larrea D, Aguirre-Lopez B, de Gomez-Puyou MT, Perez-Montfort R, et al. Structural basis of human triosephosphate isomerase deficiency: mutation E104D is related to alterations of a conserved water network at the dimer interface. J Biol Chem. 2008;283(34):23254–63. https://doi.org/10.1074/jbc.M802145200.

Article  CAS  Google Scholar 

Rodriguez-Bolanos M, Perez-Montfort R. Medical and veterinary importance of the moonlighting functions of triosephosphate isomerase. Curr Protein Pept Sci. 2019;20(4):304–15. https://doi.org/10.2174/1389203719666181026170751.

Article  CAS  Google Scholar 

Roland BP, Stuchul KA, Larsen SB, Amrich CG, Vandemark AP, Celotto AM, et al. Evidence of a triosephosphate isomerase non-catalytic function crucial to behavior and longevity. J Cell Sci. 2013;126(14):3151–8. https://doi.org/10.1242/jcs.124586.

Article  CAS  Google Scholar 

Roland BP, Amrich CG, Kammerer CJ, Stuchul KA, Larsen SB, Rode S, et al. Triosephosphate isomerase I170V alters catalytic site, enhances stability and induces pathology in a Drosophila model of TPI deficiency. Biochim Biophys Acta. 2015;1852(1):61–9. https://doi.org/10.1016/j.bbadis.2014.10.010.

Article  CAS  Google Scholar 

Roland BP, Zeccola AM, Larsen SB, Amrich CG, Talsma AD, Stuchul KA, et al. Structural and genetic studies demonstrate neurologic dysfunction in triosephosphate isomerase deficiency is associated with impaired synaptic vesicle dynamics. PLoS Genet. 2016;12(3):e1005941. https://doi.org/10.1371/journal.pgen.1005941.

Article  CAS  Google Scholar 

Schneider AS, Valentine WN, Hattori M, Heins HL Jr. Hereditary hemolytic anemia with triosephosphate isomerase deficiency. N Engl J Med. 1965;272:229–35. https://doi.org/10.1056/NEJM196502042720503.

Article  CAS  Google Scholar 

Segal J, Mulleder M, Kruger A, Adler T, Scholze-Wittler M, Becker L, et al. Low catalytic activity is insufficient to induce disease pathology in triosephosphate isomerase deficiency. J Inherit Metab Dis. 2019;42(5):839–49. https://doi.org/10.1002/jimd.12105.

Article  CAS  Google Scholar 

Shi Y, Vaden DL, Ju S, Ding D, Geiger JH, Greenberg ML. Genetic perturbation of glycolysis results in inhibition of de novo inositol biosynthesis. J Biol Chem. 2005;280(51):41805–10. https://doi.org/10.1074/jbc.M505181200.

Article  CAS  Google Scholar 

VanDemark AP, Hrizo SL, Eicher SL, Kowalski J, Myers TD, Pfeifer MR, et al. Itavastatin and resveratrol increase triosephosphate isomerase protein in a newly identified variant of TPI deficiency. Dis Model Mech. 2022. https://doi.org/10.1242/dmm.049261.

Article  Google Scholar 

Vives-Corrons JL, Rubinson-Skala H, Mateo M, Estella J, Feliu E, Dreyfus JC. Triosephosphate isomerase deficiency with hemolytic anemia and severe neuromuscular disease: familial and biochemical studies of a case found in Spain. Hum Genet. 1978;42(2):171–80. https://doi.org/10.1007/BF00283637.

Article  CAS  Google Scholar 

Xu J, Su Q, Gao M, Liang Q, Li J, Chen X. Differential expression and effects of peroxiredoxin-6 on drug resistance and cancer stem cell-like properties in non-small cell lung cancer. Onco Targets Ther. 2019;12:10477–86. https://doi.org/10.2147/OTT.S211125.

Article  CAS  Google Scholar 

Zhang JJ, Fan TT, Mao YZ, Hou JL, Wang M, Zhang M, et al. Nuclear dihydroxyacetone phosphate signals nutrient sufficiency and cell cycle phase to global histone acetylation. Nat Metab. 2021;3(6):859–75. https://doi.org/10.1038/s42255-021-00405-8.

Article  CAS  Google Scholar 

留言 (0)

沒有登入
gif