Folylpolyglutamate synthetase mRNA G-quadruplexes regulate its cell protrusion localization and enhance a cancer cell invasive phenotype upon folate repletion

Li X, Miao Y, Pal DS, Devreotes PN. Excitable networks controlling cell migration during development and disease. Semin Cell Dev Biol. 2020;100:133–42.

CAS  Google Scholar 

Worbs T, Hammerschmidt SI, Förster R. Dendritic cell migration in health and disease. Nat Rev Immunol. 2017;17:30–48.

CAS  Google Scholar 

Guak H, Krawczyk CM. Implications of cellular metabolism for immune cell migration. Immunology. 2020;161:200–8.

CAS  Google Scholar 

Trepat X, Chen Z, Jacobson K. Cell migration. Compr Physiol. 2012;2:2369–92.

Google Scholar 

Lawson CD, Ridley AJ. Rho GTPase signaling complexes in cell migration and invasion. J Cell Biol. 2018;217:447–57.

CAS  Google Scholar 

Warner H, Wilson BJ, Caswell PT. Control of adhesion and protrusion in cell migration by rho GTPases. Curr Opin Cell Biol. 2019;56:64–70.

CAS  Google Scholar 

Guan X, Guan X, Dong C, Jiao Z. Rho GTPases and related signaling complexes in cell migration and invasion. Exp Cell Res. 2020;388:111824.

Cushman I, Casey PJ. RHO methylation matters: a role for isoprenylcysteine carboxylmethyltransferase in cell migration and adhesion. Cell Adhes Migr. 2011;5:11–5.

Google Scholar 

Cushman I, Casey PJ. Role of isoprenylcysteine carboxylmethyltransferase-catalyzed methylation in rho function and migration. J Biol Chem. 2009;284:27964–73.

CAS  Google Scholar 

Oleinik NV, Helke KL, Kistner-Griffin E, Krupenko NI, Krupenko SA. Rho GTPases RhoA and Rac1 mediate effects of dietary folate on metastatic potential of A549 cancer cells through the control of cofilin phosphorylation. J Biol Chem. 2014;289:26383–94.

CAS  Google Scholar 

Backlund PS. Post-translational processing of RhoA. Carboxyl methylation of the carboxyl-terminal prenylcysteine increases the half-life of Rhoa. J Biol Chem. 1997;272:33175–80.

CAS  Google Scholar 

Cansado J. To finish things well: cysteine methylation ensures selective GTPase membrane localization and signalling. Curr Genet. 2018;64:341–4.

CAS  Google Scholar 

Sun Q, Huang M, Wei Y. Diversity of the reaction mechanisms of SAM-dependent enzymes. Acta Pharm Sin B. 2021;11:632–50.

CAS  Google Scholar 

Fox JT, Stover PJ. Folate-mediated one-carbon metabolism. Vitam Horm. 2008;79:1–44.

CAS  Google Scholar 

Froese DS, Fowler B, Baumgartner MR. Vitamin B 12 , folate, and the methionine remethylation cycle-biochemistry, pathways, and regulation. J Inherit Metab Dis. 2019;42:673–85.

CAS  Google Scholar 

Scott JM. Folate and vitamin B12. Proc Nutr Soc. 1999;58:441–8.

CAS  Google Scholar 

Rosenberg IH. A history of the isolation and identification of folic acid (folate). Ann Nutr Metab. 2012;61:231–5.

CAS  Google Scholar 

Zhao R, Diop-Bove N, Visentin M, Goldman ID. Mechanisms of membrane transport of folates into cells and across epithelia. Annu Rev Nutr. 2011;31:177–201.

CAS  Google Scholar 

Raz S, Stark M, Assaraf YG. Folylpoly-γ-glutamate synthetase: a key determinant of folate homeostasis and antifolate resistance in cancer. Drug Resist Updat. 2016;28:43–64.

Google Scholar 

McGuire JJ, Hsieh P, Coward JK, Bertino JR. Enzymatic synthesis of folylpolyglutamates. Characterization of the reaction and its products. J Biol Chem. 1980;255:5776–88.

CAS  Google Scholar 

Kamen BA, Capdevila A. Receptor-mediated folate accumulation is regulated by the cellular folate content. Proc Natl Acad Sci U S A. 1986;83:5983–7.

CAS  Google Scholar 

Hoppner K, Lampi B. Folate levels in human liver from autopsies in Canada. Am J Clin Nutr. 1980;33:862–4.

CAS  Google Scholar 

Garrow TA, Admon A, Shane B. Expression cloning of a human cDNA encoding folylpoly(gamma-glutamate) synthetase and determination of its primary structure. Proc Natl Acad Sci U S A. 1992;89:9151–5.

CAS  Google Scholar 

Freemantle SJ, Taylor SM, Krystal G, Moran RG. Upstream organization of and multiple transcripts from the human folylpoly-gamma-glutamate synthetase gene. J Biol Chem. 1995;270:9579–84.

CAS  Google Scholar 

Lawrence SA, Titus SA, Ferguson J, Heineman AL, Taylor SM, Moran RG. Mammalian mitochondrial and cytosolic folylpolyglutamate synthetase maintain the subcellular compartmentalization of folates. J Biol Chem. 2014;289:29386–96.

CAS  Google Scholar 

Stark M, Raz S, Assaraf YG. Folylpoly-ɣ-glutamate synthetase association to the cytoskeleton: implications to folate metabolon compartmentalization. J Proteome. 2021;239:104169.

Banco MT, Ferré-D’Amaré AR. The emerging structural complexity of G-quadruplex RNAs. RNA. 2021;27:390–402.

CAS  Google Scholar 

Lipps HJ, Rhodes D. G-quadruplex structures: in vivo evidence and function. Trends Cell Biol. 2009;19:414–22.

CAS  Google Scholar 

Hänsel-Hertsch R, Di Antonio M, Balasubramanian S. DNA G-quadruplexes in the human genome: detection, functions and therapeutic potential. Nat Rev Mol Cell Biol. 2017;18:279–84.

Google Scholar 

Varshney D, Spiegel J, Zyner K, Tannahill D, Balasubramanian S. The regulation and functions of DNA and RNA G-quadruplexes. Nat Rev Mol Cell Biol. 2020;21:459–74.

CAS  Google Scholar 

Besnard E, Babled A, Lapasset L, Milhavet O, Parrinello H, Dantec C, et al. Unraveling cell type-specific and reprogrammable human replication origin signatures associated with G-quadruplex consensus motifs. Nat Struct Mol Biol. 2012;19:837–44.

CAS  Google Scholar 

Phan AT. Human telomeric G-quadruplex: structures of DNA and RNA sequences. FEBS J. 2010;277:1107–17.

CAS  Google Scholar 

Lee DSM, Ghanem LR, Barash Y. Integrative analysis reveals RNA G-quadruplexes in UTRs are selectively constrained and enriched for functional associations. Nat Commun. 2020;11:527.

Bedrat A, Lacroix L, Mergny JL. Re-evaluation of G-quadruplex propensity with G4Hunter. Nucleic Acids Res. 2016;44:1746–59.

Google Scholar 

Subramanian M, Rage F, Tabet R, Flatter E, Mandel JL, Moine H. G-quadruplex RNA structure as a signal for neurite mRNA targeting. EMBO Rep. 2011;12:697–704.

CAS  Google Scholar 

Darnell JC, Jensen KB, Jin P, Brown V, Warren ST, Darnell RB. Fragile X mental retardation protein targets G quartet mRNAs important for neuronal function. Cell. 2001;107:489–99.

CAS  Google Scholar 

Aune D, Deneo-Pellegrini H, Ronco AL, Boffetta P, Acosta G, Mendilaharsu M, et al. Dietary folate intake and the risk of 11 types of cancer: a case–control study in Uruguay. Ann Oncol. 2011;22:444–51.

CAS  Google Scholar 

Cantarella CD, Ragusa D, Giammanco M, Tosi S. Folate deficiency as predisposing factor for childhood leukaemia: a review of the literature. Genes Nutr. 2017;12:14.

Pieroth R, Paver S, Day S, Lammersfeld C. Folate and its impact on cancer risk. Curr Nutr Rep. 2018;7:70.

CAS  Google Scholar 

Kim YI. Role of folate in colon cancer development and progression. J Nutr. 2003;133(11 Suppl 1):3731S–3739S.

Lee TY, Chiang EP, Shih YT, Lane HY, Lin JT, Wu CY. Lower serum folate is associated with development and invasiveness of gastric cancer. World J Gastroenterol. 2014;20:11313–20.

Google Scholar 

Su YH, Huang WC, Huang TH, Huang YJ, Sue YK, Huynh TT, et al. Folate deficient tumor microenvironment promotes epithelial-to-mesenchymal transition and cancer stem-like phenotypes. Oncotarget. 2016;7:33246–56.

Google Scholar 

Kuo CS, Lin CY, Wu MY, Lu CL, Huang RF. Relationship between folate status and tumour progression in patients with hepatocellular carcinoma. Br J Nutr. 2008;100:596–602.

CAS  Google Scholar 

Jacquemet G, Hamidi H, Ivaska J. Filopodia in cell adhesion, 3D migration and cancer cell invasion. Curr Opin Cell Biol. 2015;36:23–31.

CAS  Google Scholar 

Augoff K, Hryniewicz-Jankowska A, Tabola R. Invadopodia: clearing the way for cancer cell invasion. Ann Transl Med. 2020;8:902.

Google Scholar 

Beaty BT, Condeelis J. Digging a little deeper: the stages of invadopodium formation and maturation. Eur J Cell Biol. 2014;93:438–44.

CAS  Google Scholar 

Willett M, Brocard M, Pollard HJ, Morley SJ. mRNA encoding WAVE-Arp2/3-associated proteins is co-localized with foci of active protein synthesis at the leading edge of MRC5 fibroblasts during cell migration. Biochem J. 2013;452:45–55.

CAS  Google Scholar 

Maizels Y, Oberman F, Miloslavski R, Ginzach N, Berman M, Yisraeli JK. Localization of cofilin mRNA to the leading edge of migrating cells promotes directed cell migration. J Cell Sci. 2015;128:1922–33.

CAS  Google Scholar 

Babic I, Sharma S, Black DL. A role for polypyrimidine tract binding protein in the establishment of focal adhesions. Mol Cell Biol. 2009;29:5564–77.

CAS  Google Scholar 

Mingle LA, Okuhama NN, Shi J, Singer RH, Condeelis J, Liu G. Localization of all seven messenger RNAs for the actin-polymerization nucleator Arp2/3 complex in the protrusions of fibroblasts. J Cell Sci. 2005;118(Pt 11):2425–33.

CAS  Google Scholar 

Oleynikov Y, Singer RH. Real-time visualization of ZBP1 association with beta-actin mRNA during transcription and localization. Curr Biol. 2003;13:199–207.

CAS  Google Scholar 

Tushev G, Glock C, Heumüller M, Biever A, Jovanovic M, Schuman EM. Alternative 3’ UTRs modify the localization, regulatory potential, stability, and plasticity of mRNAs in neuronal compartments. Neuron. 2018;98:495–511.e6.

CAS  Google Scholar 

Mattioli CC, Rom A, Franke V, Imami K, Arrey G, Terne M, et al. Alternative 3’ UTRs direct localization of functionally diverse protein isoforms in neuronal compartments. Nucleic Acids Res. 2019;47:2560–73.

CAS  Google Scholar 

Bauer KE, Segura I, Gaspar I, Scheuss V, Illig C, Ammer G, et al. Live cell imaging reveals 3’-UTR dependent mRNA sorting to synapses. Nat Commun. 2019;10:3178.

Kislauskis EH, Li Z, Singer RH, Taneja KL. Isoform-specific 3’-untranslated sequences sort alpha-cardiac and beta-cytoplasmic actin messenger RNAs to different cytoplasmic compartments. J Cell Biol. 1993;123:165–72.

CAS  Google Scholar 

Moissoglu K, Stueland M, Gasparski AN, Wang T, Jenkins LM, Hastings ML, et al. RNA localization and co-translational interactions control RAB13 GTPase function and cell migration. EMBO J. 2020;39:e104958.

Shen Z, Liu B, Wu B, Zhou H, Wang X, Cao J, et al. FMRP regulates STAT3 mRNA localization to cellular protrusions and local translation to promote hepatocellular carcinoma metastasis. Commun Biol. 2021;4:540.

Liu YH, Jin JL, Wang YZ, Tan Y, Zhou YY, Peng T, et al. Protrusion-localized STAT3 mRNA promotes metastasis of highly metastatic hepatocellular carcinoma cells in vitro. Acta Pharmacol Sin. 2016;37:805–13.

CAS  Google Scholar 

Tutucci E, Vera M, Biswas J, Garcia J, Parker R, Singer RH. An improved MS2 system for accurate reporting of the mRNA life cycle. Nat Methods. 2018;15:81–9.

CAS  Google Scholar 

Jia Z, Barbier L, Stuart H, Amraei M, Pelech S, Dennis JW, et al. Tumor cell pseudopodial protrusions. Localized signaling domains coordinating cytoskeleton remodeling, cell adhesion, glycolysis, RNA translocation, and protein translation. J Biol Chem. 2005;280:30564–73.

CAS  Google Scholar 

Goering R, Hudish LI, Guzman BB, Raj N, Bassell GJ, Russ HA, et al. FMRP promotes RNA localization to neuronal projections through interactions between its RGG domain and G-quadruplex RNA sequences. Elife. 2020;9:1–31.

Google Scholar 

Zhang Y, Gaetano CM, Williams KR, Bassell GJ, Mihailescu MR. FMRP interacts with G-quadruplex structures in the 3’-UTR of its dendritic target Shank1 mRNA. RNA Biol. 2014;11:1364–74.

Google Scholar 

留言 (0)

沒有登入
gif