Research progress on black phosphorus hybrids hydrogel platforms for biomedical applications

Wang J, Zhu M, Hu Y, Chen R, Hao Z, Wang Y, et al. Exosome-hydrogel system in bone tissue engineering: a promising therapeutic strategy. Macromol Biosci. 2022:e2200496-e.

Xing Y, Zeng B, Yang W. Light responsive hydrogels for controlled drug delivery. Front Bioeng Biotechnol. 2022:10.

Hu Z-C, Lu J-Q, Zhang T-W, Liang H-F, Yuan H, Su D-H, et al. Piezoresistive MXene/silk fibroin nanocomposite hydrogel for accelerating bone regeneration by re-establishing electrical microenvironment. Bioactive Mater. 2023;22:1–17.

Google Scholar 

Zhu W, Zhou Z, Huang Y, Liu H, He N, Zhu X, et al. A versatile 3D-printable hydrogel for antichondrosarcoma, antibacterial, and tissue repair. J Mater Sci Technol. 2023;136:200–11.

Google Scholar 

Rafieian S, Mirzadeh H, Mahdavi H, Masoumi ME. A review on nanocomposite hydrogels and their biomedical applications. Sci Eng Composite Mater. 2019;26(1):154–74.

Song HS, Kwon OS, Kim J-H, Conde J, Artzi N. 3D hydrogel scaffold doped with 2D graphene materials for biosensors and bioelectronics. Biosens Bioelectron. 2017;89:187–200.

Google Scholar 

Huang H, Feng W, Chen Y. Two-dimensional biomaterials: material science, biological effect and biomedical engineering applications. Chem Soc Rev. 2021;50(20):11381–485.

Google Scholar 

Xiong S, Chen X, Liu Y, Fan T, Wang Q, Zhang H, et al. Black phosphorus as a versatile nanoplatform: from unique properties to biomedical applications. J Innov Opt Health Sci. 2020;13(5).

Du C, Huang W. Progress and prospects of nanocomposite hydrogels in bone tissue engineering. Nanocomposites. 2022;8(1):102–24.

Google Scholar 

Vashist A, Kaushik A, Vashist A, Sagar V, Ghosal A, Gupta YK, et al. Advances in carbon nanotubes–hydrogel hybrids in nanomedicine for therapeutics. Adv Healthc Mater. 2018;7(9):1701213.

Liu J, Zhao C, Chen WR, Zhou B. Recent progress in two-dimensional nanomaterials for cancer theranostics. Coord Chem Rev. 2022;469.

Mustafar S, Yusuf AKNM, Borines LM, Kusumawati EN, Kamari A, Ali NM, et al. Metal-organic framework Nanosheets (MONs): a review on interfacial syntheses and applications of coordination Nanosheets. Biointerface Res Appl Chem. 2023;13(2).

Naikoo GA, Arshad F, Almas M, Hassan IU, Pedram MZ, Aljabali AAA, et al. 2D materials, synthesis, characterization and toxicity: a critical review. Chem Biol Interact. 2022;365:110081.

Google Scholar 

Wu M, Niu X, Zhang R, Xu ZP. Two-dimensional nanomaterials for tumor microenvironment modulation and anticancer therapy. Adv Drug Deliv Rev. 2022;187.

Peera SG, Koutavarapu R, Chao L, Singh L, Murugadoss G, Rajeshkhanna G. 2D MXene nanomaterials as Electrocatalysts for hydrogen evolution reaction (HER): A Review. Micromachines. 2022;13(9).

Chaudhary V, Neugebauer P, Mounkachi O, Lahbabi S, El Fatimy A. Phosphorene—an emerging two-dimensional material: recent advances in synthesis, functionalization, and applications. 2D Mater. 2022;9(3):032001.

Google Scholar 

Li L, Yu Y, Ye GJ, Ge Q, Ou X, Wu H, et al. Black phosphorus field-effect transistors. Nat Nanotechnol. 2014;9(5):372–7.

Google Scholar 

Liu H, Neal AT, Zhu Z, Luo Z, Xu X, Tománek D, et al. Phosphorene: an unexplored 2D semiconductor with a high hole mobility. ACS Nano. 2014;8(4):4033–41.

Google Scholar 

Liang J, Hu Y, Zhang K, Wang Y, Song X, Tao A, et al. 2D layered black arsenic-phosphorus materials: synthesis, properties, and device applications. Nano Res. 2022;15(4):3737–52.

Google Scholar 

Peng L, Abbasi N, Xiao Y, Xie Z. Black phosphorus: degradation mechanism, passivation method, and application for in situ tissue regeneration. Adv Mater Interfaces. 2020;7(23).

Wang H, Yu X-F. Few-layered black phosphorus: from fabrication and customization to biomedical applications. Small. 2018;14(6).

Hu Z, Niu T, Guo R, Zhang J, Lai M, He J, et al. Two-dimensional black phosphorus: its fabrication, functionalization and applications. Nanoscale. 2018;10(46):21575–603.

Google Scholar 

Eswaraiah V, Zeng Q, Long Y, Liu Z. Black phosphorus Nanosheets: synthesis, characterization and applications. Small. 2016;12(26):3480–502.

Google Scholar 

Miao J, Zhang L, Wang C. Black phosphorus electronic and optoelectronic devices. 2d Mater. 2019;6(3).

Dinh KN, Zhang Y, Sun W. The synthesis of black phosphorus: from zero- to three-dimensional nanostructures. J Phys Energy. 2021;3(3).

Luo M, Fan T, Zhou Y, Zhang H, Mei L. 2D black phosphorus–based biomedical applications. Adv Funct Mater. 2019;29(13):1808306.

Huang X, Zhou Y, Woo CM, Pan Y, Nie L, Lai P. Multifunctional layered black phosphorene-based nanoplatform for disease diagnosis and treatment: a review. Front Optoelectron. 2020;13(4):327–51.

Google Scholar 

Wei H, Fan W, Dong Y, Wang Y, Zhou L, Wang Y, et al. Black phosphorus quantum dots: Nonlinear optical modulation material with ultraviolet saturable absorption.Frontiers in Physics.2022;10.

Anju S, Ashtami J, Mohanan PV. Black phosphorus, a prospective graphene substitute for biomedical applications. Mater Sci Eng C. 2019;97:978–93.

Google Scholar 

Yi Y, Yu X-F, Zhou W, Wang J, Chu PK. Two-dimensional black phosphorus: synthesis, modification, properties, and applications. Mater Sci Eng. 2017;120:1–33.

Google Scholar 

Gusmao R, Sofer Z, Pumera M. Black phosphorus rediscovered: from bulk material to monolayers. Angewandte Chemie-Int Edition. 2017;56(28):8052–72.

Google Scholar 

Liu H, Du Y, Deng Y, Ye PD. Semiconducting black phosphorus: synthesis, transport properties and electronic applications. Chem Soc Rev. 2015;44(9):2732–43.

Google Scholar 

Thurakkal S, Feldstein D, Perea-Causin R, Malic E, Zhang X. The art of constructing black phosphorus Nanosheet based Heterostructures: from 2D to 3D. Adv Mater. 2021;33(3).

Yuan Z, Liu D, Tian N, Zhang G, Zhang Y. Structure, preparation and properties of phosphorene. Acta Chim Sin. 2016;74(6):488–97.

Google Scholar 

Qiu M, Ren WX, Jeong T, Won M, Park GY, Sang DK, et al. Omnipotent phosphorene: a next-generation, two-dimensional nanoplatform for multidisciplinary biomedical applications. Chem Soc Rev. 2018;47(15):5588–601.

Google Scholar 

Huang K, Wu J, Gu Z. Black phosphorus hydrogel scaffolds enhance bone regeneration via a sustained supply of calcium-free phosphorus. ACS Appl Mater Interfaces. 2019;11(3):2908–16.

Google Scholar 

Xu D, Gan K, Wang Y, Wu Z, Wang Y, Zhang S, et al. A composite Deferoxamine/black phosphorus Nanosheet/gelatin hydrogel scaffold for ischemic Tibial bone repair. Int J Nanomedicine. 2022;17:1015–30.

Google Scholar 

Miao Y, Shi X, Li Q, Hao L, Liu L, Liu X, et al. Engineering natural matrices with black phosphorus nanosheets to generate multi-functional therapeutic nanocomposite hydrogels. Biomater Sci. 2019;7(10):4046–59.

Google Scholar 

Shao J, Ruan C, Xie H, Chu PK, Yu X-F. Photochemical activity of black phosphorus for near-infrared light controlled in situ biomineralization. Advanced Science. 2020;7(14).

Tan L, Hu Y, Li M, Zhang Y, Xue C, Chen M, et al. Remotely-activatable extracellular matrix-mimetic hydrogel promotes physiological bone mineralization for enhanced cranial defect healing. Chem Eng J. 2022;431:133382.

Google Scholar 

Tong L, Liao Q, Zhao Y, Huang H, Gao A, Zhang W, et al. Near-infrared light control of bone regeneration with biodegradable photothermal osteoimplant. Biomaterials. 2019;193:1–11.

Google Scholar 

Liu X, George MN, Li L, Gamble D, Miller Ii AL, Gaihre B, et al. Injectable electrical conductive and phosphate releasing gel with two-dimensional black phosphorus and carbon nanotubes for bone tissue engineering. ACS Biomater Sci Eng. 2020;6(8):4653–65.

Google Scholar 

Xu H, Liu X, George MN, Miller AL 2nd, Park S, Xu H, et al. Black phosphorus incorporation modulates nanocomposite hydrogel properties and subsequent MC3T3 cell attachment, proliferation, and differentiation. J Biomed Mater Res A. 2021;109(9):1633–45.

Google Scholar 

Li L, Liu X, Gaihre B, Li Y, Lu L. Mesenchymal stem cell spheroids incorporated with collagen and black phosphorus promote osteogenesis of biodegradable hydrogels. Mater Sci Eng C. 2021;121:111812.

Google Scholar 

Xu H, Liu X, Park S, Terzic A, Lu L. Size-dependent osteogenesis of black phosphorus in nanocomposite hydrogel scaffolds. J Biomed Mater Res A. 2022;110(8):1488–98.

Google Scholar 

Hu Z, Lu J, Hu A, Dou Y, Wang S, Su D, et al. Engineering BPQDs/PLGA nanospheres-integrated wood hydrogel bionic scaffold for combinatory bone repair and osteolytic tumor therapy. Chem Eng J. 2022;446:137269.

Google Scholar 

Miao Y, Chen Y, Luo J, Liu X, Yang Q, Shi X, et al. Black phosphorus nanosheets-enabled DNA hydrogel integrating 3D-printed scaffold for promoting vascularized bone regeneration. Bioactive Mater. 2023;21:97–109.

Google Scholar 

Xu Y, Xu C, He L, Zhou J, Chen T, Ouyang L, et al. Stratified-structural hydrogel incorporated with magnesium-ion-modified black phosphorus nanosheets for promoting neuro-vascularized bone regeneration. Bioactive Mater. 2022;16:271–84.

Google Scholar 

Qing Y, Wang H, Lou Y, Fang X, Li S, Wang X, et al. Chemotactic ion-releasing hydrogel for synergistic antibacterial and bone regeneration. Mater Today Chem. 2022;24:100894.

Google Scholar 

Wang X, Shao J, Abd El Raouf M, Xie H, Huang H, Wang H, et al. Near-infrared light-triggered drug delivery system based on black phosphorus for in vivo bone regeneration. Biomaterials. 2018;179:164–74.

Google Scholar 

Yang B, Yin J, Chen Y, Pan S, Yao H, Gao Y, et al. 2D-black-phosphorus-reinforced 3d-printed scaffolds:a stepwise countermeasure for osteosarcoma. Adv Mater (Deerfield Beach, Fla). 2018;30(10).

Ling X, Wang H, Huang S, Xia F, Dresselhaus MS. The renaissance of black phosphorus. Proc Natl Acad Sci U S A. 2015;112(15):4523–30.

Chen S, Guo R, Liang Q, Xiao X. Multifunctional modified polylactic acid nanofibrous scaffold incorporating sodium alginate microspheres decorated with strontium and black phosphorus for bone tissue engineering. J Biomater Sci Polym Ed. 2021;32(12):1598–617.

Google Scholar 

Liu X, Miller AL 2nd, Park S, George MN, Waletzki BE, Xu H, et al. Two-dimensional black phosphorus and graphene oxide Nanosheets synergistically enhance cell proliferation and osteogenesis on 3D printed scaffolds. ACS Appl Mater Interfaces. 2019;11(26):23558–72.

Google Scholar 

Chen H, Jin Y, Wang J, Wang Y, Jiang W, Dai H, et al. Design of smart targeted and responsive drug delivery systems with enhanced antibacterial properties. Nanoscale. 2018;10(45):20946–62.

Google Scholar 

Wu Q, Wei G, Xu Z, Han J, Xi J, Fan L, et al. Mechanistic insight into the light-irradiated carbon capsules as an antibacterial agent. ACS Appl Mater Interfaces. 2018;10(30):25026–36.

Google Scholar 

Shui C, Scutt A. Mild heat shock induces proliferation, alkaline phosphatase activity, and mineralization in human bone marrow stromal cells and mg-63 cells. In Vitro. 2001;16(4):731–41.

Google Scholar 

Xia F, Wang H, Jia Y. Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics. Nat Commun. 2014;5:4458.

Google Scholar 

Qu G, Xia T, Zhou W, Zhang X, Zhang H, Hu L, et al. Property–activity relationship of black phosphorus at the nano–bio interface: from molecules to organisms. Chem Rev. 2020;120(4):2288–346.

Google Scholar 

Zhang X, Zhang Z, Zhang S, Li D, Ma W, Ma C, et al. Size effect on the cytotoxicity of layered black phosphorus and underlying mechanisms. Small. 2017;13(32):1701210.

Zhang X, Xie H, Liu Z, Tan C, Luo Z, Li H, et al. Black phosphorus quantum dots. Angewandte Chemie (International ed in English). 2015;54(12):3653–7.

Google Scholar 

Sun Z, Xie H, Tang S, Yu X-F, Guo Z, Shao J, et al. Ultrasmall Black Phosphorus Quantum Dots: Synthesis and Use as Photothermal Agents. Angew Chem Int Ed. 2015;54(39):11526–30.

Shao J, Xie H, Huang H, Li Z, Sun Z, Xu Y, et al. Biodegradable black phosphorus-based nanospheres for in vivo photothermal cancer therapy. Nat Commun. 2016;7(1):12967.

Google Scholar 

Lin S, Yang G, Jiang F, Zhou M, Yin S, Tang Y, et al. A magnesium-enriched 3D culture system that mimics the bone development microenvironment for vascularized bone regeneration. Adv Sci 2019;6(12).

Park J-W, Hanawa T, Chung J-H. The relative effects of ca and mg ions on MSC osteogenesis in the surface modification of microrough Ti implants. Int J Nanomed. 2019;14:5697–711.

Google Scholar 

Vaudry D, Stork PJS, Lazarovici P, Eiden LE. Signaling pathways for PC12 cell differentiation: making the right connections. Science. 2002;296(5573):1648–9.

Google Scholar 

Cheng L, Cai Z, Zhao J, Wang F, Lu M, Deng L, et al. Black phosphorus-based 2D materials for bone therapy. Bioactive Mater. 2020;5(4):1026–43.

Google Scholar 

Kang MS, Song S-J, Cha JH, Cho Y, Lee HU, Hyon S-H, et al. Increased neuritogenesis on ternary nanofiber matrices of PLCL and laminin decorated with black phosphorus. J Ind Eng Chem. 2020;92:226–35.

Google Scholar 

Sun J, Zheng G, Lee H-W, Liu N, Wang H, Yao H, et al. Formation of stable phosphorus–carbon bond for enhanced performance in black phosphorus nanoparticle–graphite composite battery anodes. Nano Lett. 2014;14(8):4573–80.

Google Scholar 

Xu C, Xu Y, Yang M, Chang Y, Nie A, Liu Z, et al. Black-phosphorus-incorporated hydrogel as a conductive and biodegradable platform for enhancement of the neural differentiation of mesenchymal. Stem Cells. 2020;30(39):2000177.

Google Scholar 

Halim A, Qu K-Y, Zhang X-F, Huang N-P. Recent advances in the application of two-dimensional nanomaterials for neural tissue engineering and regeneration. ACS Biomater Sci Eng. 2021;7(8):3503–29.

Google Scholar 

Wu F, Zu Y, Weng W, Yang Y, Hu J, Mao Y, et al. Multifunctional inverse opal film as a responsive drug carrier for spinal cord injury repair. Chem Eng J. 2022;436:135256.

Google Scholar 

Chen W, Ouyang J, Yi X, Xu Y, Niu C, Zhang W, et al. Black phosphorus nanosheets as a neuroprotective nanomedicine for neurodegenerative disorder therapy. Adv Mater .2018;30(3):1703458.

Zhou W, Pan T, Cui H, Zhao Z, Chu PK, Yu X-F. Black phosphorus: bioactive nanomaterials with inherent and selective chemotherapeutic effects. Angew Chem Int  Ed. 2019;58(3):769–74.

Xiong Z, Zhang X, Zhang S, Lei L, Ma W, Li D, et al. Bacterial toxicity of exfoliated black phosphorus nanosheets. Ecotoxicol Environ Saf. 2018;161:507–14.

Google Scholar 

Alibek K, Bekmurzayeva A, Mussabekova A, Sultankulov B. Using antimicrobial adjuvant therapy in cancer treatment: a review. Infect Agents Cancer. 2012;7(1).

Qin L, Jiang S, He H, Ling G, Zhang P. Functional black phosphorus nanosheets for cancer therapy. J Control Release. 2020;318:50–66.

Google Scholar 

Norouzi M, Nazari B, Miller DW. Injectable hydrogel-based drug delivery systems for local cancer therapy. Drug Discov Today. 2016;21(11):1835–49.

Google Scholar 

Xiao Y, Gu Y, Qin L, Chen L, Chen X, Cui W, et al. Injectable thermosensitive hydrogel-based drug delivery system for local cancer therapy. Colloids Surf B-Biointerfaces. 2021:200.

Fan D-y, Tian Y, Liu Z-j. Injectable hydrogels for localized cancer therapy. Front Chem. 2019:7.

Shao J, Ruan C, Xie H, Li Z, Wang H, Chu PK, et al. Black-phosphorus-incorporated hydrogel as a Sprayable and biodegradable Photothermal platform for postsurgical treatment of. Cancer. 2018;5(5):1700848.

Google Scholar 

Xing C, Chen S, Qiu M, Liang X, Liu Q, Zou Q, et al. Conceptually novel black phosphorus/cellulose hydrogels as promising photothermal agents for effective cancer therapy. Adv Healthc Mater. 2018;7(7):1701510.

Xie J, Fan T, Kim JH, Xu Y, Wang Y, Liang W, et al. Emetine-loaded black phosphorus hydrogel sensitizes tumor to photothermal therapy through inhibition of stress granule formation. Adv Funct Mater. 2020;30(43):2003891.

He J, Chen G, Zhao P, Ou C. Near-infrared light-controllable bufalin delivery from a black phosphorus-hybrid supramolecular hydrogel for synergistic ph

留言 (0)

沒有登入
gif