Molecular mechanisms of environmental exposures and human disease

Landrigan, P. J. et al. The Lancet Commission on pollution and health. Lancet 391, 462–512 (2018).

Google Scholar 

Peters, A., Nawrot, T. S. & Baccarelli, A. A. Hallmarks of environmental insults. Cell 184, 1455–1468 (2021).

CAS  Google Scholar 

Fuller, R. et al. Pollution and health: a progress update. Lancet Planet. Health 6, e535–e547 (2022).

Google Scholar 

Prüss-Ustün, A. et al. Environmental risks and non-communicable diseases. BMJ 364, l265 (2019).

Google Scholar 

Wild, C. P. Complementing the genome with an “exposome”: the outstanding challenge of environmental exposure measurement in molecular epidemiology. Cancer Epidemiol. Biomark. Prev. 14, 1847–1850 (2005).

CAS  Google Scholar 

Sen, P., Shah, P. P., Nativio, R. & Berger, S. L. Epigenetic mechanisms of longevity and aging. Cell 166, 822–839 (2016).

CAS  Google Scholar 

Rutledge, J., Oh, H. & Wyss-Coray, T. Measuring biological age using omics data. Nat. Rev. Genet. https://doi.org/10.1038/s41576-022-00511-7 (2022). This review elucidates how epigenomic, transcriptomic and proteomic data can be used to build ageing clocks that measure rates of ageing at a molecular level.

Article  Google Scholar 

Eckhardt, C. M. et al. Predicting risk of lung function impairment and all-cause mortality using a DNA methylation-based classifier of tobacco smoke exposure. Respir. Med. 200, 106896 (2022).

Google Scholar 

Alibhai, F. J. et al. Cellular senescence contributes to age-dependent changes in circulating extracellular vesicle cargo and function. Aging Cell 19, e13103 (2020).

CAS  Google Scholar 

Cayir, A., Byun, H.-M. & Barrow, T. M. Environmental epitranscriptomics. Environ. Res. 189, 109885 (2020).

CAS  Google Scholar 

Teng, P.-C. et al. RNA modifications and epigenetics in modulation of lung cancer and pulmonary diseases. Int. J. Mol. Sci. 22, 10592 (2021).

CAS  Google Scholar 

Brunst, K. J., Baccarelli, A. A. & Wright, R. J. Integrating mitochondriomics in children’s environmental health. J. Appl. Toxicol. 35, 976–991 (2015).

CAS  Google Scholar 

Hunter, D. J. Gene-environment interactions in human diseases. Nat. Rev. Genet. 6, 287–298 (2005).

CAS  Google Scholar 

Hartiala, J. A., Hilser, J. R., Biswas, S., Lusis, A. J. & Allayee, H. Gene-environment interactions for cardiovascular disease. Curr. Atheroscler. Rep. 23, 75 (2021).

CAS  Google Scholar 

Almoguera, B. et al. Identification of four novel loci in asthma in European American and African American populations. Am. J. Respir. Crit. Care Med. 195, 456–463 (2017).

Google Scholar 

Minelli, C. et al. Glutathione-S-transferase genes and asthma phenotypes: a Human Genome Epidemiology (HuGE) systematic review and meta-analysis including unpublished data. Int. J. Epidemiol. 39, 539–562 (2010).

Google Scholar 

Lee, S.-Y. et al. Modification of additive effect between vitamins and ETS on childhood asthma risk according to GSTP1 polymorphism: a cross-sectional study. BMC Pulm. Med. 15, 125 (2015).

Google Scholar 

Muñoz, B. et al. The relationship among IL-13, GSTP1, and CYP1A1 polymorphisms and environmental tobacco smoke in a population of children with asthma in Northern Mexico. Environ. Toxicol. Pharmacol. 33, 226–232 (2012).

Google Scholar 

Dai, X. et al. Do glutathione S-transferase genes modify the link between indoor air pollution and asthma, allergies, and lung function? A systematic review. Curr. Allergy Asthma Rep. 18, 20 (2018).

Google Scholar 

Hoskins, A., Wu, P., Reiss, S. & Dworski, R. Glutathione S-transferase P1 Ile105Val polymorphism modulates allergen-induced airway inflammation in human atopic asthmatics in vivo. Clin. Exp. Allergy 43, 527–534 (2013).

CAS  Google Scholar 

Haley, R. W., Kramer, G., Xiao, J., Dever, J. A. & Teiber, J. F. Evaluation of a gene–environment interaction of PON1 and low-level nerve agent exposure with Gulf War illness: a prevalence case–control study drawn from the U.S. Military Health Survey’s national population sample. Environ. Health Perspect. 130, 57001 (2022). This study demonstrates how gene–environment interaction studies can strengthen causal inference in epidemiologic studies and improve our understanding of the pathogenesis of complex or rare diseases.

Google Scholar 

Weisskopf, M. G. Response to ‘Comment on “Evaluation of a gene–environment interaction of PON1 and low-level nerve agent exposure with Gulf War illness: a prevalence case-control study drawn from the U.S. Military Health Survey’s national population sample”. Environ. Health Perspect. 130, 68005 (2022).

Google Scholar 

Glass, D. C. & Sim, M. R. The challenges of exposure assessment in health studies of Gulf War veterans. Philos. Trans. R. Soc. Lond. B Biol. Sci. 361, 627–637 (2006).

Google Scholar 

Smith, P. G. & Day, N. E. The design of case-control studies: the influence of confounding and interaction effects. Int. J. Epidemiol. 13, 356–365 (1984).

CAS  Google Scholar 

Gauderman, W. J. et al. A unified model for the analysis of gene-environment interaction. Am. J. Epidemiol. 188, 760–767 (2019).

Google Scholar 

Zhang, P., Lewinger, J. P., Conti, D., Morrison, J. L. & Gauderman, W. J. Detecting gene-environment interactions for a quantitative trait in a genome-wide association study. Genet. Epidemiol. 40, 394–403 (2016).

Google Scholar 

Bycroft, C. et al. The UK Biobank resource with deep phenotyping and genomic data. Nature 562, 203–209 (2018).

CAS  Google Scholar 

Wang, H. et al. Genotype-by-environment interactions inferred from genetic effects on phenotypic variability in the UK Biobank. Sci. Adv. 5, eaaw3538 (2019).

Google Scholar 

Carlsten, C. et al. Genes, the environment and personalized medicine: we need to harness both environmental and genetic data to maximize personal and population health. EMBO Rep. 15, 736–739 (2014).

CAS  Google Scholar 

Moore, L. D., Le, T. & Fan, G. DNA methylation and its basic function. Neuropsychopharmacology 38, 23–38 (2013).

CAS  Google Scholar 

Bhutani, N., Burns, D. M. & Blau, H. M. DNA demethylation dynamics. Cell 146, 866–872 (2011).

CAS  Google Scholar 

Weinberg, D. N. et al. The histone mark H3K36me2 recruits DNMT3A and shapes the intergenic DNA methylation landscape. Nature 573, 281–286 (2019).

CAS  Google Scholar 

Lee, K. et al. Integrated analysis of tissue-specific promoter methylation and gene expression profile in complex diseases. Int. J. Mol. Sci. 21, E5056 (2020).

Google Scholar 

Yang, X. et al. Gene body methylation can alter gene expression and is a therapeutic target in cancer. Cancer Cell 26, 577–590 (2014).

CAS  Google Scholar 

Huang, S. K. et al. Effect of concentration and duration of particulate matter exposure on the transcriptome and DNA methylome of bronchial epithelial cells. Environ. Epigenet 7, dvaa022 (2021).

Google Scholar 

Huff, R. D., Carlsten, C. & Hirota, J. A. An update on immunologic mechanisms in the respiratory mucosa in response to air pollutants. J. Allergy Clin. Immunol. 143, 1989–2001 (2019).

CAS  Google Scholar 

Cui, A. et al. VCAM-1-mediated neutrophil infiltration exacerbates ambient fine particle-induced lung injury. Toxicol. Lett. 302, 60–74 (2019).

CAS  Google Scholar 

Pope, C. A. et al. Exposure to fine particulate air pollution is associated with endothelial injury and systemic inflammation. Circ. Res. 119, 1204–1214 (2016).

CAS  Google Scholar 

Kohli, R. M. & Zhang, Y. TET enzymes, TDG and the dynamics of DNA demethylation. Nature 502, 472–479 (2013).

CAS  Google Scholar 

Leclercq, B. et al. Genetic and epigenetic alterations in normal and sensitive COPD-diseased human bronchial epithelial cells repeatedly exposed to air pollution-derived PM2.5. Environ. Pollut. 230, 163–177 (2017).

CAS  Google Scholar 

Rider, C. F. & Carlsten, C. Air pollution and DNA methylation: effects of exposure in humans. Clin. Epigenetics 11, 131 (2019). This review elucidates how air pollution exposure modulates DNA methylation and describes how DNA methylation changes influence the ageing process and disease development.

Google Scholar 

Carmona, J. J. et al. Short-term airborne particulate matter exposure alters the epigenetic landscape of human genes associated with the mitogen-activated protein kinase network: a cross-sectional study. Environ. Health 13, 94 (2014).

Google Scholar 

Liang, Y. et al. TET2 promotes IL-1β expression in J774.1 cell through TLR4/MAPK signaling pathway with demethylation of TAB2 promoter. Mol. Immunol. 126, 136–142 (2020).

CAS  Google Scholar 

Chen, R. et al. DNA hypomethylation and its mediation in the effects of fine particulate air pollution on cardiovascular biomarkers: a randomized crossover trial. Environ. Int. 94, 614–619 (2016).

CAS  Google Scholar 

Peng, C. et al. Particulate air pollution and fasting blood glucose in nondiabetic individuals: associations and epigenetic mediation in the normative aging study, 2000–2011. Environ. Health Perspect. 124, 1715–1721 (2016).

Google Scholar 

Tantoh, D. M. et al. AHRR cg05575921 methylation in relation to smoking and PM2.5 exposure among Taiwanese men and women. Clin. Epigenetics 12, 117 (2020).

CAS  Google Scholar 

Jhun, M. A. et al. Modeling the causal role of DNA methylation in the association between cigarette smoking and inflammation in African Americans: a 2-step epigenetic Mendelian randomization study. Am. J. Epidemiol. 186, 1149–1158 (2017).

Google Scholar 

Joehanes, R. et al. Epigenetic signatures of cigarette smoking. Circ. Cardiovasc. Genet. 9, 436–447 (2016).

CAS  Google Scholar 

Fernández-Sanlés, A. et al. DNA methylation biomarkers of myocardial infarction and cardiovascular disease. Clin. Epigenetics 13, 86 (2021).

Google Scholar 

Kodal, J. B., Kobylecki, C. J., Vedel-Krogh, S., Nordestgaard, B. G. & Bojesen, S. E. AHRR hypomethylation, lung function, lung function decline and respiratory symptoms. Eur. Respir. J. 51, 1701512 (2018).

Google Scholar 

Bollepalli, S., Korhonen, T., Kaprio, J., Anders, S. & Ollikainen, M. EpiSmokEr: a robust classifier to determine smoking status from DNA methylation data. Epigenomics 11, 1469–1486 (2019).

CAS  Google Scholar 

Park, S. K., Zhao, Z. & Mukherjee, B. Construction of environmental risk score beyond standard linear models using machine learning methods: application to metal mixtures, oxidative stress and cardiovascular disease in NHANES. Environ. Health 16, 102 (2017).

Google Scholar 

Benowitz, N. L. et al. Prevalence of smoking assessed biochemically in an urban public hospital: a rationale for routine cotinine screening. Am. J. Epidemiol. 170, 885–891 (2009).

Google Scholar 

Hsieh, S. J. et al. Biomarkers increase detection of active smoking and secondhand smoke exposure in critically ill patients. Crit. Care Med. 39, 40–45 (2011).

Google Scholar 

Horvath, S. DNA methylation age of human tissues and cell types. Genome Biol. 14, R115 (2013).

Google Scholar 

Horvath, S. & Raj, K. DNA methylation-based biomarkers and the epigenetic clock theory of ageing. Nat. Rev. Genet. 19, 371–384 (2018). This review enumerates epigenetic biomarkers of ageing and explains how epigenetic age acceleration predicts clinical health outcomes including age-related phenotypes.

CAS  Google Scholar 

Cardenas, A. et al. Epigenome-wide association study and epigenetic age acceleration associated with cigarette smoking among Costa Rican adults. Sci. Rep. 12, 4277 (2022).

CAS  Google Scholar 

Nwanaji-Enwerem, J. C. et al. Long-term ambient particle exposures and blood DNA methylation age: findings from the VA normative aging study. Environ. Epigenet. 2, dvw006 (2016).

Google Scholar 

Wu, X. et al. Effect of tobacco smoking on the epigenetic age of human respiratory organs. Clin. Epigenetics 11, 183 (2019).

Google Scholar 

Lind, P. M., Salihovic, S. & Lind, L. High plasma organochlorine pesticide levels are related to increased biological age as calculated by DNA methylation analysis. Environ. Int. 113, 109–113 (2018).

CAS  Google Scholar 

Fiorito, G. et al. Socioeconomic position, lifestyle habits and biomarkers of epigenetic aging: a multi-cohort analysis. Aging 11, 2045–2070 (2019).

留言 (0)

沒有登入
gif