Dissection of gastric homeostasis in vivo facilitates permanent capture of isthmus-like stem cells in vitro

Kim, T.-H. & Shivdasani, R. A. Stomach development, stem cells and disease. Development 143, 554–565 (2016).

Article  CAS  Google Scholar 

Bartfeld, S. & Koo, B. Adult gastric stem cells and their niches. Wiley Interdiscip. Rev. Dev. Biol. https://doi.org/10.1002/wdev.261 (2017).

Lee, E. R. & Leblond, C. P. Dynamic histology of the antral epithelium in the mouse stomach. Am. J. Anat. 172, 183–185 (1985).

Article  Google Scholar 

Karam, S. M. & Leblond, C. P. Dynamics of epithelial cells in the corpus of the mouse stomach. I. Identification of proliferative cell types and pinpointing of the stem cell. Anat. Rec. 236, 259–279 (1993).

Article  CAS  Google Scholar 

Yoshioka, T. et al. Bmi1 marks gastric stem cells located in the isthmus in mice. J. Pathol. 248, 179–190 (2019).

Article  CAS  Google Scholar 

Matsuo, J. et al. Identification of stem cells in the epithelium of the stomach corpus and antrum of mice. Gastroenterology 152, 218–231.e14 (2017).

Article  Google Scholar 

Hayakawa, Y. et al. CCK2R identifies and regulates gastric antral stem cell states and carcinogenesis. Gut 64, 544 (2015).

Article  CAS  Google Scholar 

Arnold, K. et al. Sox2+ adult stem and progenitor cells are important for tissue regeneration and survival of mice. Cell Stem Cell 9, 317–329 (2011).

Article  CAS  Google Scholar 

Han, S. et al. Defining the identity and dynamics of adult gastric isthmus stem cells. Cell Stem Cell 25, 342–356.e7 (2019).

Article  CAS  Google Scholar 

Hayakawa, Y. et al. Mist1 expressing gastric stem cells maintain the normal and neoplastic gastric epithelium and are supported by a perivascular stem cell niche. Cancer Cell 28, 800–814 (2015).

Article  CAS  Google Scholar 

Choi, E. et al. Lrig1+ gastric isthmal progenitor cells restore normal gastric lineage cells during damage recovery in adult mouse stomach. Gut 67, 1595 (2018).

Article  CAS  Google Scholar 

Tan, S. H. et al. AQP5 enriches for stem cells and cancer origins in the distal stomach. Nature 578, 437–443 (2020).

Article  CAS  Google Scholar 

Barker, N. et al. Lgr5+ve stem cells drive self renewal in the stomach and build long-lived gastric units in vitro. Cell Stem Cell 6, 25–36 (2010).

Lee, J.-H. et al. p57Kip2 imposes the reserve stem cell state of gastric chief cells. Cell Stem Cell 29, 826–839.e9 (2022).

Article  CAS  Google Scholar 

Stange, D. E. et al. Differentiated Troy+ chief cells act as reserve stem cells to generate all lineages of the stomach epithelium. Cell 155, 357–368 (2013).

Article  CAS  Google Scholar 

Leushacke, M. et al. Lgr5-expressing chief cells drive epithelial regeneration and cancer in the oxyntic stomach. Nat. Cell Biol. 19, 774–786 (2017).

Article  CAS  Google Scholar 

Kim, T.-H. & Shivdasani, R. A. Notch signaling in stomach epithelial stem cell homeostasis. J. Exp. Med. 208, 677–688 (2011).

Article  CAS  Google Scholar 

Westphalen, C. B. et al. Long-lived intestinal tuft cells serve as colon cancer–initiating cells. J. Clin. Invest. 124, 1283–1295 (2014).

Article  CAS  Google Scholar 

Qiao, X. T. et al. Prospective identification of a multilineage progenitor in murine stomach epithelium. Gastroenterology 133, 1989–1998.e3 (2007).

Article  CAS  Google Scholar 

Sayols, S. et al. Signalling codes for the maintenance and lineage commitment of embryonic gastric epithelial progenitors. Development https://doi.org/10.1242/dev.188839 (2020).

Busslinger, G. A. et al. Human gastrointestinal epithelia of the esophagus, stomach, and duodenum resolved at single-cell resolution. Cell Rep. 34, 108819 (2021).

Article  CAS  Google Scholar 

Bockerstett, K. A. et al. Single-cell transcriptional analyses of spasmolytic polypeptide-expressing metaplasia arising from acute drug injury and chronic inflammation in the stomach. Gut 69, 1027–1038 (2020).

Article  CAS  Google Scholar 

Bockerstett, K. A. et al. Single-cell transcriptional analyses identify lineage-specific epithelial responses to inflammation and metaplastic development in the gastric corpus. Gastroenterology 159, 2116–2129.e4 (2020).

Article  CAS  Google Scholar 

Terano, A. et al. A monolayer culture of human gastric epithelial cells. Dig. Dis. Sci. 28, 595–603 (1983).

Article  CAS  Google Scholar 

Schlaermann, P. et al. A novel human gastric primary cell culture system for modelling Helicobacter pylori infection in vitro. Gut 65, 202–213 (2014).

Article  Google Scholar 

Wang, Y. et al. Conversion of human gastric epithelial cells to multipotent endodermal progenitors using defined small molecules. Cell Stem Cell 19, 449–461 (2016).

Article  CAS  Google Scholar 

Teal, E., Steele, N. G., Chakrabarti, J., Holokai, L. & Zavros, Y. Mouse- and human-derived primary gastric epithelial monolayer culture for the study of regeneration. J. Vis. Exp. https://doi.org/10.3791/57435 (2018).

Boccellato, F. et al. Polarised epithelial monolayers of the gastric mucosa reveal insights into mucosal homeostasis and defence against infection. Gut 68, 400–413 (2018).

Article  Google Scholar 

Bartfeld, S. et al. In vitro expansion of human gastric epithelial stem cells and their responses to bacterial infection. Gastroenterology 148, 126–136.e6 (2015).

Article  Google Scholar 

McCracken, K. W. et al. Wnt/β-catenin promotes gastric fundus specification in mice and humans. Nature 541, 182–187 (2017).

Article  CAS  Google Scholar 

Li, X. et al. Oncogenic transformation of diverse gastrointestinal tissues in primary organoid culture. Nat. Med. 20, 769–777 (2014).

Article  CAS  Google Scholar 

McCracken, K. W. et al. Modelling human development and disease in pluripotent stem-cell-derived gastric organoids. Nature 516, 400–404 (2014).

Article  CAS  Google Scholar 

Zilionis, R. et al. Single-cell barcoding and sequencing using droplet microfluidics. Nat. Protoc. 12, 44–73 (2017).

Article  CAS  Google Scholar 

Haber, A. L. et al. A single-cell survey of the small intestinal epithelium. Nature 551, 333–339 (2017).

Article  CAS  Google Scholar 

Dekaney, C. M., King, S., Sheahan, B. & Cortes, J. Mist1 expression is required for Paneth cell maturation. Cell Mol. Gastroenterol. Hepatol. 8, 549–560 (2019).

Article  Google Scholar 

Mellitzer, G. et al. Loss of enteroendocrine cells in mice alters lipid absorption and glucose homeostasis and impairs postnatal survival. J. Clin. Invest. 120, 1708–1721 (2010).

Article  CAS  Google Scholar 

Gracz, A. D. et al. Sox4 promotes Atoh1-independent intestinal secretory differentiation toward tuft and enteroendocrine fates. Gastroenterology 155, 1508–1523.e10 (2018).

Article  CAS  Google Scholar 

Sarkar, A. et al. Sox2 suppresses gastric tumorigenesis in mice. Cell Rep. 16, 1929–1941 (2016).

Article  CAS  Google Scholar 

Sigal, M. et al. Stromal R-spondin orchestrates gastric epithelial stem cells and gland homeostasis. Nature 548, 451–455 (2017).

Article  CAS  Google Scholar 

Tian, H. et al. A reserve stem cell population in small intestine renders Lgr5-positive cells dispensable. Nature 478, 255–259 (2011).

Article  CAS  Google Scholar 

Grün, D. et al. De novo prediction of stem cell identity using single-cell transcriptome data. Cell Stem Cell 19, 266–277 (2016).

Article  Google Scholar 

Mou, H. et al. Dual SMAD signaling inhibition enables long-term expansion of diverse epithelial basal cells. Cell Stem Cell 19, 217–231 (2016).

Article  CAS  Google Scholar 

Takahashi, M. et al. Hepatocyte growth factor is the most potent endogenous stimulant of rabbit gastric epithelial cell proliferation and migration in primary culture. J. Clin. Invest. 95, 1994–2003 (1995).

Article  CAS  Google Scholar 

Gifford, G. B. et al. Notch1 and Notch2 receptors regulate mouse and human gastric antral epithelial cell homoeostasis. Gut 66, 1001 (2017).

Article  CAS  Google Scholar 

Basak, O. et al. Induced quiescence of Lgr5+ stem cells in intestinal organoids enables differentiation of hormone-producing enteroendocrine cells. Cell Stem Cell 20, 177–190.e4 (2017).

Article  CAS  Google Scholar 

Levine, J. S., Nakane, P. K. & Allen, R. H. Immunocytochemical localization of human intrinsic factor: the nonstimulated stomach. Gastroenterology 79, 493–502 (1980).

Article  CAS  Google Scholar 

Leushacke, M., Barker, N. & Pin, C. Quantifying Lgr5-positive stem cell behaviour in the pyloric epithelium. Sci. Rep. 6, 21923 (2016).

Article  CAS  Google Scholar 

Bellono, N. W. et al. Enterochromaffin cells are gut chemosensors that couple to sensory neural pathways. Cell 170, 185–198.e16 (2017).

Article  CAS  Google Scholar 

Lu, Y. et al. Evidence that SOX2 overexpression is oncogenic in the lung. PLoS ONE 5, e11022 (2010).

Article  Google Scholar 

Burclaff, J., Willet, S., Sáenz, J. B. & Mills, J. Proliferation and differentiation of gastric mucous neck and chief cells during homeostasis and injury-induced metaplasia. Gastroenterology 158, 598–609.e5 (2019).

Article 

留言 (0)

沒有登入
gif