Nanoparticulate MgH2 ameliorates anxiety/depression-like behaviors in a mouse model of multiple sclerosis by regulating microglial polarization and oxidative stress

Compston A, Coles A. Multiple sclerosis. Lancet. 2002;359(9313):1221–31. https://doi.org/10.1016/S0140-6736(02)08220-X.

Article  Google Scholar 

Mohr DC, Hart SL, Fonareva I, Tasch ES. Treatment of depression for patients with multiple sclerosis in neurology clinics. Mult Scler. 2006;12(2):204–8. https://doi.org/10.1191/135248506ms1265oa.

Article  CAS  Google Scholar 

Marrie RA, Reingold S, Cohen J, Stuve O, Trojano M, Sorensen PS, Cutter G, Reider N. The incidence and prevalence of psychiatric disorders in multiple sclerosis: a systematic review. Mult Scler. 2015;21(3):305–17. https://doi.org/10.1177/1352458514564487.

Article  Google Scholar 

Magyari M, Sorensen PS. Comorbidity in multiple sclerosis. Front Neurol. 2020;11:851. https://doi.org/10.3389/fneur.2020.00851.

Article  Google Scholar 

Feinstein A, Magalhaes S, Richard JF, Audet B, Moore C. The link between multiple sclerosis and depression. Nat Rev Neurol. 2014;10(9):507–17. https://doi.org/10.1038/nrneurol.2014.139.

Article  Google Scholar 

Chou IJ, Kuo CF, Tanasescu R, Tench CR, Tiley CG, Constantinescu CS, Whitehouse WP. Comorbidity in multiple sclerosis: its temporal relationships with disease onset and dose effect on mortality. Eur J Neurol. 2020;27(1):105–12. https://doi.org/10.1111/ene.14040.

Article  CAS  Google Scholar 

Kalb R, Feinstein A, Rohrig A, Sankary L, Willis A. Depression and suicidality in multiple sclerosis: red flags, management strategies, and ethical considerations. Curr Neurol Neurosci Rep. 2019;19(10):77. https://doi.org/10.1007/s11910-019-0992-1.

Article  Google Scholar 

Chwastiak L, Ehde DM, Gibbons LE, Sullivan M, Bowen JD, Kraft GH. Depressive symptoms and severity of illness in multiple sclerosis: epidemiologic study of a large community sample. Am J Psychiatry. 2002;159(11):1862–8. https://doi.org/10.1176/appi.ajp.159.11.1862.

Article  Google Scholar 

Coplan JD, Aaronson CJ, Panthangi V, Kim Y. Treating comorbid anxiety and depression: psychosocial and pharmacological approaches. World J Psychiatry. 2015;5(4):366–78. https://doi.org/10.5498/wjp.v5.i4.366.

Article  Google Scholar 

Cipriani A, Furukawa TA, Salanti G, Chaimani A, Atkinson LZ, Ogawa Y, Leucht S, Ruhe HG, Turner EH, Higgins JPT, Egger M, Takeshima N, Hayasaka Y, Imai H, Shinohara K, Tajika A, Ioannidis JPA, Geddes JR. Comparative efficacy and acceptability of 21 antidepressant drugs for the acute treatment of adults with major depressive disorder: a systematic review and network meta-analysis. Lancet. 2018;391(10128):1357–66. https://doi.org/10.1016/S0140-6736(17)32802-7.

Article  CAS  Google Scholar 

Zhou X, Teng T, Zhang Y, Del Giovane C, Furukawa TA, Weisz JR, Li X, Cuijpers P, Coghill D, Xiang Y, Hetrick SE, Leucht S, Qin M, Barth J, Ravindran AV, Yang L, Curry J, Fan L, Silva SG, Cipriani A, Xie P. Comparative efficacy and acceptability of antidepressants, psychotherapies, and their combination for acute treatment of children and adolescents with depressive disorder: a systematic review and network meta-analysis. Lancet Psychiatry. 2020;7(7):581–601. https://doi.org/10.1016/S2215-0366(20)30137-1.

Article  Google Scholar 

Hetrick SE, McKenzie JE, Bailey AP, Sharma V, Moller CI, Badcock PB, Cox GR, Merry SN, Meader N. New generation antidepressants for depression in children and adolescents: a network meta-analysis. Cochrane Database Syst Rev. 2021;5:CD013674. https://doi.org/10.1002/14651858.CD013674.pub2.

Article  Google Scholar 

Hashimoto K. Rapid-acting antidepressant ketamine, its metabolites and other candidates: a historical overview and future perspective. Psychiatry Clin Neurosci. 2019;73(10):613–27. https://doi.org/10.1111/pcn.12902.

Article  CAS  Google Scholar 

Nathoo N, Mackie A. Treating depression in multiple sclerosis with antidepressants: a brief review of clinical trials and exploration of clinical symptoms to guide treatment decisions. Mult Scler Relat Disord. 2017;18:177–80. https://doi.org/10.1016/j.msard.2017.10.004.

Article  Google Scholar 

Fiest KM, Walker JR, Bernstein CN, Graff LA, Zarychanski R, Abou-Setta AM, Patten SB, Sareen J, Bolton JM, Marriott JJ, Fisk JD, Singer A, Marrie RA, Burden CTDT, D. Managing the Effects of Psychiatric Comorbidity in Chronic Immunoinflammatory. Systematic review and meta-analysis of interventions for depression and anxiety in persons with multiple sclerosis. Mult Scler Relat Disord. 2016;5:12–26. https://doi.org/10.1016/j.msard.2015.10.004.

Article  CAS  Google Scholar 

Gosselin D, Skola D, Coufal NG, Holtman IR, Schlachetzki JCM, Sajti E, Jaeger BN, O’Connor C, Fitzpatrick C, Pasillas MP, Pena M, Adair A, Gonda DD, Levy ML, Ransohoff RM, Gage FH, Glass CK. An environment-dependent transcriptional network specifies human microglia identity. Science. 2017. https://doi.org/10.1126/science.aal3222.

Article  Google Scholar 

Singh S, Metz I, Amor S, van der Valk P, Stadelmann C, Bruck W. Microglial nodules in early multiple sclerosis white matter are associated with degenerating axons. Acta Neuropathol. 2013;125(4):595–608. https://doi.org/10.1007/s00401-013-1082-0.

Article  CAS  Google Scholar 

Voet S, Prinz M, van Loo G. Microglia in central nervous system inflammation and multiple sclerosis pathology. Trends Mol Med. 2019;25(2):112–23. https://doi.org/10.1016/j.molmed.2018.11.005.

Article  CAS  Google Scholar 

Xia Z, Friedlander RM. Minocycline in multiple sclerosis—compelling results but too early to tell. N Engl J Med. 2017;376(22):2191–3. https://doi.org/10.1056/NEJMe1703230.

Article  Google Scholar 

Yirmiya R, Rimmerman N, Reshef R. Depression as a microglial disease. Trends Neurosci. 2015;38(10):637–58. https://doi.org/10.1016/j.tins.2015.08.001.

Article  CAS  Google Scholar 

Felger JC. Imaging the role of inflammation in mood and anxiety-related disorders. Curr Neuropharmacol. 2018;16(5):533–58. https://doi.org/10.2174/1570159X15666171123201142.

Article  CAS  Google Scholar 

Muller N, Schwarz MJ. The immune-mediated alteration of serotonin and glutamate: towards an integrated view of depression. Mol Psychiatry. 2007;12(11):988–1000. https://doi.org/10.1038/sj.mp.4002006.

Article  CAS  Google Scholar 

Jia X, Gao Z, Hu H. Microglia in depression: current perspectives. Sci China Life Sci. 2021;64(6):911–25. https://doi.org/10.1007/s11427-020-1815-6.

Article  CAS  Google Scholar 

McKim DB, Weber MD, Niraula A, Sawicki CM, Liu X, Jarrett BL, Ramirez-Chan K, Wang Y, Roeth RM, Sucaldito AD, Sobol CG, Quan N, Sheridan JF, Godbout JP. Microglial recruitment of IL-1beta-producing monocytes to brain endothelium causes stress-induced anxiety. Mol Psychiatry. 2018;23(6):1421–31. https://doi.org/10.1038/mp.2017.64.

Article  CAS  Google Scholar 

Yasumoto Y, Stoiljkovic M, Kim JD, Sestan-Pesa M, Gao XB, Diano S, Horvath TL. Ucp2-dependent microglia-neuronal coupling controls ventral hippocampal circuit function and anxiety-like behavior. Mol Psychiatry. 2021;26(7):2740–52. https://doi.org/10.1038/s41380-021-01105-1.

Article  CAS  Google Scholar 

Bai S, Guo W, Feng Y, Deng H, Li G, Nie H, Guo G, Yu H, Ma Y, Wang J, Chen S, Jing J, Yang J, Tang Y, Tang Z. Efficacy and safety of anti-inflammatory agents for the treatment of major depressive disorder: a systematic review and meta-analysis of randomised controlled trials. J Neurol Neurosurg Psychiatry. 2020;91(1):21–32. https://doi.org/10.1136/jnnp-2019-320912.

Article  Google Scholar 

Husain MI, Chaudhry IB, Husain N, Khoso AB, Rahman RR, Hamirani MM, Hodsoll J, Qurashi I, Deakin JF, Young AH. Minocycline as an adjunct for treatment-resistant depressive symptoms: a pilot randomised placebo-controlled trial. J Psychopharmacol. 2017;31(9):1166–75. https://doi.org/10.1177/0269881117724352.

Article  CAS  Google Scholar 

Sorensen PS, Sellebjerg F, Lycke J, Farkkila M, Creange A, Lund CG, Schluep M, Frederiksen JL, Stenager E, Pfleger C, Garde E, Kinnunen E, Marhardt K, Investigators RS. Minocycline added to subcutaneous interferon beta-1a in multiple sclerosis: randomized RECYCLINE study. Eur J Neurol. 2016;23(5):861–70. https://doi.org/10.1111/ene.12953.

Article  CAS  Google Scholar 

Chen W, Zhang HT, Qin SC. Neuroprotective effects of molecular hydrogen: a critical review. Neurosci Bull. 2021;37(3):389–404. https://doi.org/10.1007/s12264-020-00597-1.

Article  CAS  Google Scholar 

Zhang Y, Su WJ, Chen Y, Wu TY, Gong H, Shen XL, Wang YX, Sun XJ, Jiang CL. Effects of hydrogen-rich water on depressive-like behavior in mice. Sci Rep. 2016;6:23742. https://doi.org/10.1038/srep23742.

Article  CAS  Google Scholar 

Pilchova I, Klacanova K, Tatarkova Z, Kaplan P, Racay P. The involvement of Mg(2+) in regulation of cellular and mitochondrial functions. Oxid Med Cell Longev. 2017;2017:6797460. https://doi.org/10.1155/2017/6797460.

Article  CAS  Google Scholar 

Nielsen FH. Magnesium deficiency and increased inflammation: current perspectives. J Inflamm Res. 2018;11:25–34. https://doi.org/10.2147/JIR.S136742.

Article  CAS  Google Scholar 

Shahi A, Aslani S, Ataollahi M, Mahmoudi M. The role of magnesium in different inflammatory diseases. Inflammopharmacology. 2019;27(4):649–61. https://doi.org/10.1007/s10787-019-00603-7.

Article  Google Scholar 

Zheltova AA, Kharitonova MV, Iezhitsa IN, Spasov AA. Magnesium deficiency and oxidative stress: an update. Biomedicine (Taipei). 2016;6(4):20. https://doi.org/10.7603/s40681-016-0020-6.

Article  Google Scholar 

Du J, Zhu M, Bao H, Li B, Dong Y, Xiao C, Zhang GY, Henter I, Rudorfer M, Vitiello B. The role of nutrients in protecting mitochondrial function and neurotransmitter signaling: implications for the treatment of depression, PTSD, and suicidal behaviors. Crit Rev Food Sci Nutr. 2016;56(15):2560–78. https://doi.org/10.1080/10408398.2013.876960.

Article  CAS  Google Scholar 

Eby GA 3rd, Eby KL. Magnesium for treatment-resistant depression: a review and hypothesis. Med Hypotheses. 2010;74(4):649–60. https://doi.org/10.1016/j.mehy.2009.10.051.

Article  CAS  Google Scholar 

Yu Z, Sun D, Feng J, Tan W, Fang X, Zhao M, Zhao X, Pu Y, Huang A, Xiang Z, Cao L, He C. MSX3 switches microglia polarization and protects from inflammation-induced demyelination. J Neurosci. 2015;35(16):6350–65. https://doi.org/10.1523/JNEUROSCI.2468-14.2015.

Article  CAS  Google Scholar 

Chu X, Zhou Y, Hu Z, Lou J, Song W, Li J, Liang X, Chen C, Wang S, Yang B, Chen L, Zhang X, Song J, Dong Y, Chen S, He L, Xie Q, Chen X, Li W. 24-hour-restraint stress induces long-term depressive-like phenotypes in mice. Sci Rep. 2016;6:32935. https://doi.org/10.1038/srep32935.

Article  CAS  Google Scholar 

Lu F, Yin D, Pu Y, Liu W, Li Z, Shao Q, He C, Cao L. Shikimic acid promotes oligodendrocyte precursor cell differentiation and accelerates remyelination in mice. Neurosci Bull. 2019;35(3):434–46. https://doi.org/10.1007/s12264-018-0322-7.

Article  CAS  Google Scholar 

Wiebe S, Nagpal A, Truong VT, Park J, Skalecka A, He AJ, Gamache K, Khoutorsky A, Gantois I, Sonenberg N. Inhibitory interneurons mediate autism-associated behaviors via 4E-BP2. Proc Natl Acad Sci U S A. 2019;116(36):18060–7. https://doi.org/10.1073/pnas.1908126116.

Article  CAS 

留言 (0)

沒有登入
gif