Novel benzenesulfonamide bearing 1,2,4-triazoles as potent anti-microbial and anti-oxidant agents

Rao RN, Jena S, Mukherjee M, Maiti B, Chanda K. Green synthesis of biologically active heterocycles of medicinal importance: a review. Environ Chem Lett. 2021;19:3315–58. https://doi.org/10.1007/s10311-021-01232-9.

Article  CAS  Google Scholar 

Jampilek J. Heterocycles in medicinal chemistry. Molecules. 2019;24:3839 https://doi.org/10.3390/molecules24213839.

Article  CAS  Google Scholar 

Chinchilla R, Najera C, Yus M. Metalated heterocycles and their applications in synthetic organic chemistry. Chem Rev. 2004;104:2667–722. https://doi.org/10.1021/cr020101a.

Article  CAS  Google Scholar 

Ali MA, Kaneko T. Syntheses of aromatic/heterocyclic derived bioplastics with high thermal/mechanical performance. Ind Eng Chem Res. 2019;58:15958–74. https://doi.org/10.1021/acs.iecr.9b00830.

Article  CAS  Google Scholar 

Qadir T, Amin A, Sharma PK, Jeelani I, Abe H. A review on medicinally important heterocyclic compounds. Open Medicinal Chem J. 2022;16. https://doi.org/10.2174/18741045-v16-e2202280.

Rotella DP. Chapter four - heterocycles in drug discovery: properties and preparation. Adv Heterocycl Chem. 2021;134:149–83. https://doi.org/10.1016/bs.aihch.2020.10.002.

Article  Google Scholar 

Gomtsyan A. Heterocycles in drugs and drug discovery. Chem Heterocycl Comp. 2012;48:7–10. https://doi.org/10.1007/s10593-012-0960-z.

Article  CAS  Google Scholar 

Abdelli A, Azzouni S, Plais R, Gaucher A, Efrit ML, Prim D. Recent advances in the chemistry of 1,2,4-triazoles: Synthesis, reactivity and biological activities. Tetrahedron Lett. 2021;86:153518 https://doi.org/10.1016/j.tetlet.2021.153518.

Article  CAS  Google Scholar 

Vagish CB, Sudeep P, Jayadevappa HP, Kumar AK. 1,2,4-Triazoles: synthetic and medicinal perspectives. Int J Curr Res. 2020;12:12950–60. https://doi.org/10.24941/ijcr.39386.08.2020.

Article  CAS  Google Scholar 

Asami T, Min YK, Nagata N, Yamagishi K, Takatsuto S, Fujioka S, et al. Characterization of brassinazole, a triazole-type brassinosteroid biosynthesis inhibitor. Plant Physiol. 2000;123:93–100. https://doi.org/10.1104/pp.123.1.93.

Article  CAS  Google Scholar 

Guo H-Y, Chen Z-A, Shen Q-K, Quan Z-S. Application of triazoles in the structural modification of natural products. J Enzym Inhib Med Chem. 2021;36:1115–44. https://doi.org/10.1080/14756366.2021.1890066.

Article  CAS  Google Scholar 

Aggarwal R, Sumran S. An insight on medicinal attributes of 1,2,4-triazoles. Eur J Med Chem. 2005;205:112652 https://doi.org/10.1016/j.ejmech.2020.112652.

Article  CAS  Google Scholar 

Abdelazeem AH, El-Din AGS, Arab HH, El-Saadi MT, El-Moghazy SM, Amin NH. Design, synthesis and anti-inflammatory/analgesic evaluation of novel di-substituted urea derivatives bearing diaryl-1,2,4-triazole with dual COX-2/sEH inhibitory activities. J Mol Struct. 2021;1240:130565 https://doi.org/10.1016/j.molstruc.2021.130565.

Article  CAS  Google Scholar 

Zhang H-Z, Wei J-J, Kumar KV, Rasheed S, Zhou C-H. Synthesis and biological evaluation of novel D-glucose-derived 1,2,3-triazoles as potential antibacterial and antifungal agents. Med Chem Res. 2015;24:182–96. https://doi.org/10.1007/s00044-014-1123-9.

Article  CAS  Google Scholar 

Fan YL, Ke X, Li M. Coumarin-triazole hybrids and their biological activities. J Heterocycl Chem. 2018;55:791–802. https://doi.org/10.1002/jhet.3112.

Article  CAS  Google Scholar 

Sicak Y. Design and antiproliferative and antioxidant activities of furan-based thiosemicarbazides and 1,2,4-triazoles: their structure-activity relationship and SwissADME predictions. Med Chem Res. 2021;30:1557–68. https://doi.org/10.1007/s00044-021-02756-z.

Article  CAS  Google Scholar 

Pokuri S, Singla RK, Bhat VG, Shenoy GG. Insights on the antioxidant potential of 1, 2, 4-triazoles: synthesis, screening & QSAR studies. Curr Drug Metab. 2014;15:389–97. https://doi.org/10.2174/1389200215666140908101958.

Article  CAS  Google Scholar 

Chu X-M, Wang C, Wang W-L, Liang L-L, Liu W, Gong K-K, et al. Triazole derivatives and their anti-plasmodial and anti-malarial activities. Eur J Med Chem. 2019;166:206–23. https://doi.org/10.1016/j.ejmech.2019.01.047.

Article  CAS  Google Scholar 

Bekircan O, Mentese E, Ülker S, Kucuk C. Synthesis of some new 1,2,4-triazole derivatives starting from 3-(4-Chlorophenyl)-5-(4-methoxybenzyl)-4H-1,2,4-triazol with anti-lipase and anti-urease activities. Arch Pharm. 2014;347:387–97. https://doi.org/10.1002/ardp.201300344.

Article  CAS  Google Scholar 

Ashok D, Ram Reddy M, Nagaraju N, Dharavath R, Ramakrishna K, Gundu S, et al. Microwave-assisted synthesis and in vitro antiproliferative activity of some novel 1,2,3-triazole-based pyrazole aldehydes and their benzimidazole derivatives. Med Chem Res. 2020;29:699–706. https://doi.org/10.1007/s00044-020-02515-6.

Article  CAS  Google Scholar 

Zhang S, Xu Z, Gao C, Ren QC, Chang L, Lv ZS, et al. Triazole derivatives and their anti-tubercular activity. Eur J Med Chem. 2017;138:501–13. https://doi.org/10.1016/j.ejmech.2017.06.051.

Article  CAS  Google Scholar 

Toma A, Mogosan C, Vlase L, Leonte D, Zaharia V. Heterocycles 39. Synthesis, characterization and evaluation of the anti-inflammatory activity of thiazolo[3,2-b][1,2,4]triazole derivatives bearing pyridin-3/4-yl moiety. Med Chem Res. 2017;26:2602–13. https://doi.org/10.1007/s00044-017-1959-x.

Article  CAS  Google Scholar 

Mlakić M, Odak I, Faraho I, Talić S, Bosnar M, Lasić K, et al. New naphtho/thienobenzo-triazoles with interconnected anti-inflammatory and cholinesterase inhibitory activity. Eur J Med Chem. 2022;241:114616 https://doi.org/10.1016/j.ejmech.2022.114616.

Article  CAS  Google Scholar 

Kapron B, Czarnomysy R, Wysokinski M, Andrys R, Musilek K, Angeli A, et al. 1,2,4-Triazole-based anti-convulsant agents with additional ROS scavenging activity are effective in a model of pharmacoresistant epilepsy. J Enzym Inhib Med Chem. 2020;35:993–1002. https://doi.org/10.1080/14756366.2020.1748026.

Article  CAS  Google Scholar 

Cao X, Wang W, Wang S, Bao L. Asymmetric synthesis of novel triazole derivatives and their in vitro anti-viral activity and mechanism of action. J Med Chem. 2017;139:718–25. https://doi.org/10.1016/j.ejmech.2017.08.057.

Article  CAS  Google Scholar 

Al-Masoudi IA, Al-Soud YA, Al- Salini NJ, Al-Msoudi NA. 1,2,4-Triazoles: Synthetic approaches and pharmacological importance. (Review). Chem Heterocycl Compd. 2006;42:1377 https://doi.org/10.1007/s10593-006-0255-3.

Article  CAS  Google Scholar 

Yousif MNM, El-Gazzar ARBA, Hafez HN, Fayed AA, ElRashedy A, Yousif NM. Recent advances in the chemistry and biological activity of sulfonamide derivatives. Mini Rev Org Chem. 2022;19:695–707. https://doi.org/10.2174/1570193×19666220105145504.

Article  Google Scholar 

Apaydin S, Torok M. Sulfonamide derivatives as multi-target agents for complex diseases. Bioorg Med Chem Lett. 2019;29:2042–50. https://doi.org/10.1016/j.bmcl.2019.06.041.

Article  CAS  Google Scholar 

Sadashiva R, Naral D, Kudva J, Shivalingegowda N, Krishnappagowda L, Pampa KJ. Synthesis, spectral, biological activity, and crystal structure evaluation of novel pyrazoline derivatives having sulfonamide moiety. Med Chem Res. 2017;26:1213–27. https://doi.org/10.1007/s00044-017-1838-5.

Article  CAS  Google Scholar 

Ozkan H, Demirci B. Synthesis and anti-microbial and anti-oxidant activities of sulfonamide derivatives containing tetrazole and oxadiazole rings. J Heterocycl Chem. 2019;56:2528–35. https://doi.org/10.1002/jhet.3647.

Article  CAS  Google Scholar 

Durgapal SD, Soman SS. Evaluation of novel coumarin-proline sulfonamide hybrids as anti-cancer and anti-diabetic agents. Synth Commun. 2019;49:2869–83. https://doi.org/10.1080/00397911.2019.1647439.

Article  CAS  Google Scholar 

Wan Y, Fang G, Chen H, Deng X, Tang Z. Sulfonamide derivatives as potential anti-cancer agents and their SARs elucidation. Eur J Med Chem. 2021;15:113837 https://doi.org/10.1016/j.ejmech.2021.113837.

Article  CAS  Google Scholar 

Ghomashi R, Ghomashi S, Aghaei H, Massah AR. Recent advances in biological active sulfonamide based hybrid compounds part A: two-component sulfonamide hybrids. Curr Med Chem. 2022. https://doi.org/10.2174/0929867329666220622153348.

Supran CT. Diuretics: From classical carbonic anhydrase inhibitors to novel applications of the sulfonamides. Curr Pharmal Des. 2008;14:641–8. https://doi.org/10.2174/138161208783877947.

Article  Google Scholar 

Hamed FM, Hassan BA, Abdulridha MM. The anti-tumor activity of sulfonamides derivatives: review. Int J Pharma Res. 2020. https://doi.org/10.31838/iijpr/2020.SP1.390.

Guttlerr A, Eiselt Y, Funtan A, Theil A, Petrenko M, Keßler J, et al. Betulin sulfonamides as carbonic anhydrase inhibitors and anti-cancer agents in breast cancer cells. Int J Mol Sci. 2021;22:8808 https://doi.org/10.3390/ijms22168808.

Article  CAS  Google Scholar 

Kostyanev T, Bonten MJM, O’Brien S, Steel H, Ross S, Francois B, et al. The innovative medicines initiative’s new drugs for bad bugs programme: European public-private partnerships for the development of new strategies to tackle anti-biotic resistance. J Anti Micro Chemother. 2016;71:290–5. https://doi.org/10.1093/jac/dkv339.

Article  CAS  Google Scholar 

Mabkhot YN, Khaled JMA, Sultan MAS. Alharbi NSHA, Ghabbour HA, Nasr FA, Alsayari A, Muhsinah AB, Algarni H, Asiri YI. Synthesis and biological screening of a novel enaminone-grafted trithiocarbonate: a potential anti-cancer and anti-microbial agent. Med Chem Res. 2020;29:954–61. https://doi.org/10.1007/s00044-020-02535-2.

Article  CAS  Google Scholar 

Kumar R, Silvia B, Ram S, Sonia DP, Capasso C, Supuran CT, et al. Benzenesulfonamide bearing imidazothiadiazole and thiazolotriazole scaffolds as potent tumor associated human carbonic anhydrase IX and XII inhibitors. Bioorg Med Chem. 2017;25:1286–93. https://doi.org/10.1016/j.bmc.2016.12.047.

Article  CAS  Google Scholar 

Vats L, Sharma V, Angeli A, Kumar R, Supuran CT, Sharma PK. Synthesis of novel 4-functionalized 1,5-diaryl-1,2,3-triazoles containing benzenesulfonamide moiety as carbonic anhydrase I, II, IV and IX inhibitors. Eur J Med Chem. 2018;150:678–86. https://doi.org/10.1016/j.ejmech.2018.03.030.

Article  CAS  Google Scholar 

Ram S, Celik G, Khloya P, Vullo D, Supuran CT, Sharma PK. Benzenesulfonamide bearing 1,2,4-triazole scaffolds as potent inhibitors of tumor associated carbonic anhydrase isoforms hCA IX and hCA XII. Bioorg Med Chem. 2014;22:1873–82. https://doi.org/10.1016/j.bmc.2014.01.055.

Article  CAS  Google Scholar 

留言 (0)

沒有登入
gif