Functional connectivity changes between amygdala and prefrontal cortex after ECT are associated with improvement in distinct depressive symptoms

Fried EI, Nesse RM (2015) Depression is not a consistent syndrome: an investigation of unique symptom patterns in the STAR*D study. J Affect Disord 172:96–102

Google Scholar 

Wade BSC, Hellemann G, Espinoza RT, Woods RP, Joshi SH, Redlich R, Jørgensen A, Abbott CC, Oedegaard KJ, McClintock SM, Oltedal L, Narr KL (2020) Depressive symptom dimensions in treatment-resistant major depression and their modulation with electroconvulsive therapy. J ECT 36(2):123–129

CAS  Google Scholar 

Drysdale AT, Grosenick L, Downar J, Dunlop K, Mansouri F, Meng Y, Fetcho RN, Zebley B, Oathes DJ, Etkin A, Schatzberg AF, Sudheimer K, Keller J, Mayberg HS, Gunning FM, Alexopoulos GS, Fox MD, Pascual-Leone A, Voss HU, Casey BJ, Dubin MJ, Liston C (2017) Resting-state connectivity biomarkers define neurophysiological subtypes of depression. Nat Med 23(1):28–38

CAS  Google Scholar 

UK-ECT-Review-Group (2003) Efficacy and safety of electroconvulsive therapy in depressive disorders: a systematic review and meta-analysis. The Lancet 361(9360):799–808

Google Scholar 

Cinar S, Voshaar RO, Janzing J, Birkenhäger T, Buitelaar J, van den Broek W (2010) The course of depressive symptoms in unipolar depressive disorder during electroconvulsive therapy: A latent class analysis. J Affect Disord 124(1–2):141–147

CAS  Google Scholar 

Hawton K, CasañasiComabella C, Haw C, Saunders K (2013) Risk factors for suicide in individuals with depression: a systematic review. J Affect Disord 147(1):17–28

Google Scholar 

Reutfors J, Andersson TML, Tanskanen A, DiBernardo A, Li G, Brandt L, Brenner P (2021) Risk Factors for Suicide and suicide attempts among patients with treatment-resistant depression: nested case-control study. Arch Suicide Res 25(3):424–438

Google Scholar 

Phillips ML, Chase HW, Sheline YI, Etkin A, Almeida JRC, Deckersbach T, Trivedi MH (2015) Identifying predictors, moderators, and mediators of antidepressant response in major depressive disorder: neuroimaging approaches. Am J Psychiatry 172(2):124–138

Google Scholar 

Stippl A, Scheidegger M, Aust S, Herrera A, Bajbouj M, Gärtner M, Grimm S (2021) Ketamine specifically reduces cognitive symptoms in depressed patients: an investigation of associated neural activation patterns. J Psychiatr Res 136:402–408

CAS  Google Scholar 

Carstens L, Hartling C, Stippl A, Domke A-K, Herrera-Mendelez AL, Aust S, Gärtner M, Bajbouj M, Grimm S (2021) A symptom-based approach in predicting ECT outcome in depressed patients employing MADRS single items. Eur Arch Psychiatry Clin Neurosci 271(7):1275–1284

Google Scholar 

Okazaki M, Tominaga K, Higuchi H, Utagawa I, Nakamura E, Noguchi M, Itaya M, Hashimoto C, Yamaguchi N (2010) Predictors of response to electroconvulsive therapy obtained using the three-factor structure of the Montgomery and Åsberg Depression Rating Scale for treatment-resistant depressed patients. J ECT 26(2):87–90

Google Scholar 

Spashett R, Fernie G, Reid IC, Cameron IM (2014) MADRS symptom subtypes in ECT-treated depressed patients: relationship to response and subsequent ECT. J ECT 30(3):227–231

Google Scholar 

Wade BS, Hellemann G, Espinoza RT, Woods RP, Joshi SH, Redlich R, Dannlowski U, Jorgensen A, Abbott CC, Oltedal L (2021) Accounting for symptom heterogeneity can improve neuroimaging models of antidepressant response after electroconvulsive therapy. Hum Brain Mapp 42(16):5322–5333

Google Scholar 

Joormann J, Stanton CH (2016) Examining emotion regulation in depression: a review and future directions. Behav Res Ther 86:35–49

Google Scholar 

Gaffrey MS, Barch DM, Luby JL, Petersen SE (2021) Amygdala functional connectivity is associated with emotion regulation and amygdala reactivity in 4-to 6-year-olds. J Am Acad Child Adolesc Psychiatry 60(1):176–185

Google Scholar 

Chen C-H, Suckling J, Ooi C, Fu CHY, Williams SCR, Walsh ND, Mitterschiffthaler MT, Pich EM, Bullmore E (2008) Functional coupling of the amygdala in depressed patients treated with antidepressant medication. Neuropsychopharmacology 33(8):1909–1918

CAS  Google Scholar 

Lu Q, Li H, Luo G, Wang Y, Tang H, Han L, Yao Z (2012) Impaired prefrontal–amygdala effective connectivity is responsible for the dysfunction of emotion process in major depressive disorder: a dynamic causal modeling study on MEG. Neurosci Lett 523(2):125–130

CAS  Google Scholar 

Dannlowski U, Ohrmann P, Konrad C, Domschke K, Bauer J, Kugel H, Hohoff C, Schöning S, Kersting A, Baune BT (2009) Reduced amygdala–prefrontal coupling in major depression: association with MAOA genotype and illness severity. Int J Neuropsychopharmacol 12(1):11–22

CAS  Google Scholar 

Cano M, Cardoner N, Urretavizcaya M, Martinez-Zalacain I, Goldberg X, Via E, Contreras-Rodriguez O, Camprodon J, de Arriba-Arnau A, Hernandez-Ribas R, Pujol J, Soriano-Mas C, Menchon JM (2016) Modulation of limbic and prefrontal connectivity by electroconvulsive therapy in treatment-resistant depression: a preliminary study. Brain Stimul 9(1):65–71

Google Scholar 

Wang L-J, Kuang W-H, Xu J-J, Lei D, Yang Y-C (2014) Resting-state brain activation correlates with short-time antidepressant treatment outcome in drug-naive patients with major depressive disorder. J Int Med Res 42(4):966–975

Google Scholar 

Vasavada MM, Loureiro J, Kubicki A, Sahib A, Wade B, Hellemann G, Espinoza RT, Congdon E, Narr KL, Leaver AM (2021) Effects of serial ketamine infusions on corticolimbic functional connectivity in major depression. Biol Psychiatry Cogn Neurosci Neuroimaging 6(7):735–744

Google Scholar 

Ma Y (2015) Neuropsychological mechanism underlying antidepressant effect: a systematic meta-analysis. Mol Psychiatry 20(3):311–319

CAS  Google Scholar 

Kılıç B, Aydın S (2022) Classification of contrasting discrete emotional states indicated by EEG based graph theoretical network measures. Neuroinformatics 20(4):863–877

Google Scholar 

Aydın S (2022) Investigation of global brain dynamics depending on emotion regulation strategies indicated by graph theoretical brain network measures at system level. Cogn Neurodyn, Online ahead of print. pp 1–14

Porta-Casteràs D, Cano M, Camprodon JA, Loo C, Palao D, Soriano-Mas C, Cardoner N (2021) A multimetric systematic review of fMRI findings in patients with MDD receiving ECT. Prog Neuropsychopharmacol Biol Psychiatry 108:110178

Google Scholar 

Perrin JS, Merz S, Bennett DM, Currie J, Steele DJ, Reid IC, Schwarzbauer C (2012) Electroconvulsive therapy reduces frontal cortical connectivity in severe depressive disorder. Proc Natl Acad Sci 109(14):5464–5468

CAS  Google Scholar 

Abbott CC, Lemke NT, Gopal S, Thoma RJ, Bustillo J, Calhoun VD, Turner JA (2013) Electroconvulsive therapy response in major depressive disorder: a pilot functional network connectivity resting state FMRI investigation. Front Psych 4:10

Google Scholar 

Haq AU, Sitzmann AF, Goldman ML, Maixner DF, Mickey BJ (2015) Response of depression to electroconvulsive therapy: a meta-analysis of clinical predictors. J Clin Psychiatry 76(10):1374–1384

Google Scholar 

Van Diermen L, Van Den Ameele S, Kamperman AM, Sabbe BC, Vermeulen T, Schrijvers D, Birkenhäger TK (2018) Prediction of electroconvulsive therapy response and remission in major depression: meta-analysis. Br J Psychiatry 212(2):71–80

Google Scholar 

Stassen H, Anghelescu I, Angst J, Böker H, Lötscher K, Rujescu D, Szegedi A, Scharfetter C (2011) Predicting response to psychopharmacological treatment: survey of recent results. Pharmacopsychiatry 21(06):263–272

Google Scholar 

Montgomery S, Asberg M (1979) MADRS scale. Br J Psychiatry 134:382–389

CAS  Google Scholar 

Cao B, Luo Q, Fu Y, Du L, Qiu T, Yang X, Chen X, Chen Q, Soares JC, Cho RY (2018) Predicting individual responses to the electroconvulsive therapy with hippocampal subfield volumes in major depression disorder. Sci Rep 8(1):1–8

Google Scholar 

Jiang R, Abbott CC, Jiang T, Du Y, Espinoza R, Narr KL, Wade B, Yu Q, Song M, Lin D (2018) SMRI biomarkers predict electroconvulsive treatment outcomes: accuracy with independent data sets. Neuropsychopharmacology 43(5):1078–1087

Google Scholar 

Redlich R, Opel N, Grotegerd D, Dohm K, Zaremba D, Bürger C, Münker S, Mühlmann L, Wahl P, Heindel W, Arolt V, Alferink J, Zwanzger P, Zavorotnyy M, Kugel H, Dannlowski U (2016) Prediction of individual response to electroconvulsive therapy via machine learning on structural magnetic resonance imaging data. JAMA Psychiat 73(6):557–564

Google Scholar 

Gärtner M, Ghisu E, Herrera-Melendez AL, Koslowski M, Aust S, Asbach P, Otte C, Regen F, Heuser I, Borgwardt K, Grimm S, Bajbouj M (2021) Using routine MRI data of depressed patients to predict individual responses to electroconvulsive therapy. Exp Neurol 335:113505

Google Scholar 

Moreno-Ortega M, Prudic J, Rowny S, Patel G, Kangarlu A, Lee S, Grinband J, Palomo T, Perera T, Glasser M (2019) Resting state functional connectivity predictors of treatment response to electroconvulsive therapy in depression. Sci Rep 9(1):1–19

CAS  Google Scholar 

Leaver AM, Wade B, Vasavada M, Hellemann G, Joshi SH, Espinoza R, Narr KL (2018) Fronto-temporal connectivity predicts ECT outcome in major depression. Front Psychiatry 9:92

Van Waarde J, Scholte H, Van Oudheusden L, Verwey B, Denys D, Van Wingen G (2015) A functional MRI marker may predict the outcome of electroconvulsive therapy in severe and treatment-resistant depression. Mol Psychiatry 20(5):609–614

Google Scholar 

Ramasubbu R, Konduru N, Cortese F, Bray S, Gaxiola I, Goodyear B (2014) Reduced intrinsic connectivity of amygdala in adults with major depressive disorder. Front Psych 5:17

Google Scholar 

Williamson D, Brown E, Perlis RH, Ahl J, Baker RW, Tohen M (2006) Clinical relevance of depressive symptom improvement in bipolar I depressed patients. J Affect Disord 92(2–3):261–266

Google Scholar 

Brakemeier E-L, Merkl A, Wilbertz G, Quante A, Regen F, Bührsch N, Van Hall F, Kischkel E, Danker-Hopfe H, Anghelescu I, Heuser I, Kathmann N, Bajbouj M (2014) Cognitive-behavioral therapy as continuation treatment to sustain response after electroconvulsive therapy in depression: a randomized controlled trial. Biol Psychiat 76(3):194–202

Google Scholar 

Quilty LC, Robinson JJ, Rolland JP, Fruyt FD, Rouillon F, Bagby RM (2013) The structure of the Montgomery-Åsberg depression rating scale over the course of treatment for depression. Int J Methods Psychiatr Res 22(3):175–184

Google Scholar 

Bauer M, Pfennig A, Severus E, Whybrow PC, Angst J, Möller H-J (2013) World Federation of Societies of Biological Psychiatry (WFSBP) Guidelines for Biological Treatment of Unipolar Depressive Disorders, Part 1: Update 2013 on the acute and continuation treatment of unipolar depressive disorders. World J Biol Psychiatry 14(5):334–385

Google Scholar 

Whitfield-Gabrieli S, Nieto-Castanon A (2012) Conn: a functional connectivity toolbox for correlated and anticorrelated brain networks. Brain Connect 2(3):125–141

Google Scholar 

Gärtner M, Aust S, Bajbouj M, Fan Y, Wingenfeld K, Otte C, Heuser-Collier I, Böker H, Hättenschwiler J, Seifritz E (2019) Functional connectivity between prefrontal cortex and subgenual cingulate predicts antidepressant effects of ketamine. Eur Neuropsychopharmacol 29(4):501–508

Google Scholar 

Scheidegger M, Walter M, Lehmann M, Metzger C, Grimm S, Boeker H, Boesiger P, Henning A, Seifritz E (2012) Ketamine decreases resting state functional network connectivity in healthy subjects: implications for antidepressant drug action. PLoS ONE 7(9):e44799. https://doi.org/10.1371/journal.pone.0044799

CAS  Google Scholar 

Duff EP, Cunnington R, Egan GF (2007) REX: response exploration for neuroimaging datasets. Neuroinformatics 5(4):223–234

Google Scholar 

Brakowski J, Spinelli S, Dörig N, Bosch OG, Manoliu A, Holtforth MG, Seifritz E (2017) Resting state brain network function in major depression—depression symptomatology, antidepressant treatment effects, future research. J Psychiatr Res 92:147–159

Google Scholar 

Liu J, Fang J, Wang Z, Rong P, Hong Y, Fan Y, Wang X, Park J, Jin Y, Liu C, Zhu B, Kong J (2016) Transcutaneous vagus nerve stimulation modulates amygdala functional connectivity in patients with depression. J Affect Disord 205:319–326

Google Scholar 

Eshel N, Keller CJ, Wu W, Jiang J, Mills-Finnerty C, Huemer J, Wright R, Fonzo GA, Ichikawa N, Carreon D, Wong M, Yee A, Shpigel E, Guo Y, McTeague L, Maron-Katz A, Etkin A (2020) Global connectivity and local excitability changes underlie antidepressant effects of repetitive transcranial magnetic stimulation. Neuropsychopharmacology 45(6):1018–1025

Google Scholar 

Gudayol-Ferré E, Peró-Cebollero M, González-Garrido AA, Guàrdia-Olmos J (2015) Changes in brain connectivity related to the treatment of depression measured through fMRI: a systematic review. Front Human Neurosci 9:582

Berboth S, Morawetz C (2021) Amygdala-prefrontal connectivity during emotion regulation: a meta-analysis of psychophysiological interactions. Neuropsychologia 153:107767

Google Scholar 

Erk S, Mikschl A, Stier S, Ciaramidaro A, Gapp V, Weber B, Walter H (2010) Acute and sustained effects of cognitive emotion regulation in major depression. J Neurosci 30(47):15726–15734

CAS  Google Scholar 

Kaiser RH, Andrews-Hanna JR, Wager TD, Pizzagalli DA (2015) Large-scale network dysfunction in major depressive disorder: a meta-analysis of resting-state functional connectivity. JAMA Psychiat 72(6):603–611

Google Scholar 

Siegle GJ, Thompson W, Carter CS, Steinhauer SR, Thase ME (2007) Increased amygdala and decreased dorsolateral prefrontal BOLD responses in unipolar depression: related and independent features. Biol Psychiat 61(2):198–209

Google Scholar 

Groenewold NA, Opmeer EM, de Jonge P, Aleman A, Costafreda SG (2013) Emotional valence modulates brain functional abnormalities in depression: evidence from a meta-analysis of fMRI studies. Neurosci Biobehav Rev 37(2):152–163

留言 (0)

沒有登入
gif