MicroRNA let-7d attenuates hypertrophic scar fibrosis through modulation of iron metabolism by reducing DMT1 expression

Ali MK et al (2020) Critical role for iron accumulation in the pathogenesis of fibrotic lung disease. J Pathol 251:49–62. https://doi.org/10.1002/path.5401

Article  CAS  Google Scholar 

Castoldi M, Muckenthaler MU (2012) Regulation of iron homeostasis by microRNAs. Cell Mol Life Sci 69:3945–3952. https://doi.org/10.1007/s00018-012-1031-4

Article  CAS  Google Scholar 

Chen L, Li J, Li Q, Yan H, Zhou B, Gao Y, Li J (2017) Non-coding RNAs: the new insight on hypertrophic scar. J Cell Biochem 118:1965–1968. https://doi.org/10.1002/jcb.25873

Article  CAS  Google Scholar 

Cheng M, Liu P, Xu LX (2020) Iron promotes breast cancer cell migration via IL-6/JAK2/STAT3 signaling pathways in a paracrine or autocrine IL-6-rich inflammatory environment. J Inorg Biochem 210:111159. https://doi.org/10.1016/j.jinorgbio.2020.111159

Article  CAS  Google Scholar 

Chun Q, ZhiYong W, Fei S, XiQiao W (2016) Dynamic biological changes in fibroblasts during hypertrophic scar formation and regression. Int Wound J 13:257–262. https://doi.org/10.1111/iwj.12283

Article  Google Scholar 

Davis M, Clarke S (2013) Influence of microRNA on the maintenance of human iron metabolism. Nutrients 5:2611–2628. https://doi.org/10.3390/nu5072611

Article  CAS  Google Scholar 

Fagone P et al (2015) Identification of novel targets for the diagnosis and treatment of liver fibrosis. Int J Mol Med 36:747–752. https://doi.org/10.3892/ijmm.2015.2264

Article  CAS  Google Scholar 

Fagone P, Mangano K, Pesce A, Portale TR, Puleo S, Nicoletti F (2016) Emerging therapeutic targets for the treatment of hepatic fibrosis. Drug Discov Today 21:369–375. https://doi.org/10.1016/j.drudis.2015.10.015

Article  CAS  Google Scholar 

Fiorito F et al (2021) MG-132 interferes with iron cellular homeostasis and alters virulence of bovine herpesvirus 1. Res Vet Sci 137:1–8. https://doi.org/10.1016/j.rvsc.2021.04.023

Article  CAS  Google Scholar 

Gao G, Li J, Zhang Y, Chang YZ (2019) Cellular iron metabolism and regulation. Brain iron metabolism and CNS diseases. Advances in experimental medicine and biology, vol 1173. Springer, Singapore, pp 21–32

Google Scholar 

Ghazawi FM, Zargham R, Gilardino MS, Sasseville D, Jafarian F (2018) Insights into the pathophysiology of hypertrophic scars and keloids: how do they differ? Adv Skin Wound Care 31:582–595. https://doi.org/10.1097/01.ASW.0000527576.27489.0f

Article  Google Scholar 

Iizuka M, Sagara R (2000) Fe(III)-IDA induces proliferation and sustains functions of various types of cultured cells as a substitute for transferrin. In Vitro Cell Dev-an 36:495–501. https://doi.org/10.1290/1071-2690(2000)036%3c0495:FIIIPA%3e2.0.CO;2

Article  CAS  Google Scholar 

Ishizaka N et al (2002) Iron overload augments angiotensin II-induced cardiac fibrosis and promotes neointima formation. Circulation 106:1840–1846. https://doi.org/10.1161/01.cir.0000031161.77536.02

Article  CAS  Google Scholar 

Juríková M, Danihel Ľ, Polák Š, Varga I (2016) Ki67, PCNA, and MCM proteins: markers of proliferation in the diagnosis of breast cancer. Acta Histochem 118:544–552. https://doi.org/10.1016/j.acthis.2016.05.002

Article  CAS  Google Scholar 

Li B et al (2016) Aberrant Notch signalling contributes to hypertrophic scar formation by modulating the phenotype of keratinocytes. Exp Dermatol 25:137–142. https://doi.org/10.1111/exd.12897

Article  CAS  Google Scholar 

Li J et al (2021) Overexpression of miR-101 suppresses collagen synthesis by targeting EZH2 in hypertrophic scar fibroblasts. Burns Trauma 9:tkab038. https://doi.org/10.1093/burnst/tkab038

Article  Google Scholar 

Li S, Zhang H, Chang J, Li D, Cao P (2021) Iron overload and mitochondrial dysfunction orchestrate pulmonary fibrosis. Eur J Pharmacol 912:174613. https://doi.org/10.1016/j.ejphar.2021.174613

Article  CAS  Google Scholar 

Lim LP et al (2005) Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 433:769–773. https://doi.org/10.1038/nature03315

Article  CAS  Google Scholar 

Liu J et al (2012) Wnt/β-catenin pathway forms a negative feedback loop during TGF-β1 induced human normal skin fibroblast-to-myofibroblast transition. J Dermatol Sci 65:38–49. https://doi.org/10.1016/j.jdermsci.2011.09.012

Article  CAS  Google Scholar 

Ma H, Wu X, Li Y, Xia Y (2022) Research progress in the molecular mechanisms, therapeutic targets, and drug development of idiopathic pulmonary fibrosis. Front Pharmacol 13:963054. https://doi.org/10.3389/fphar.2022.963054

Article  CAS  Google Scholar 

Papadimitriou N, Thorfve A, Brantsing C, Junevik K, Baranto A, Barreto Henriksson H (2014) Cell viability and chondrogenic differentiation capability of human mesenchymal stem cells after iron labeling with iron sucrose. Stem Cells Dev 23:2568–2580. https://doi.org/10.1089/scd.2014.0153

Article  CAS  Google Scholar 

Ramm GA, Ruddell RG (2005) Hepatotoxicity of iron overload: mechanisms of iron-induced hepatic fibrogenesis. Semin Liver Dis 25:433–449. https://doi.org/10.1055/s-2005-923315

Article  CAS  Google Scholar 

Rosenbloom J, Macarak E, Piera-Velazquez S, Jimenez SA (2017) Human fibrotic diseases: current challenges in fibrosis research. Methods Mol Biol 1627:1–23. https://doi.org/10.1007/978-1-4939-7113-8_1

Article  CAS  Google Scholar 

Shi M, Zong X, Chen L, Guo X, Ding X (2020) MiR-506-3p regulates autophagy and proliferation in post-burn skin fibroblasts through post-transcriptionally suppressing Beclin-1 expression. In Vitro Cell Dev-an 56:522–532. https://doi.org/10.1007/s11626-020-00472-3

Article  CAS  Google Scholar 

Spagnolo P et al (2022) The role of immune response in the pathogenesis of idiopathic pulmonary fibrosis: far beyond the Th1/Th2 imbalance. Expert Opin Ther Targets 26:617–631. https://doi.org/10.1080/14728222.2022.2114897

Article  CAS  Google Scholar 

Torti SV, Torti FM (2013) Iron and cancer: more ore to be mined. Nat Rev Cancer 13:342–355. https://doi.org/10.1038/nrc3495

Article  CAS  Google Scholar 

Wan KC, Lewis WH (1996) Study of free iron and pyridinoline in hypertrophic scars and normal skin. Br J Biomed Sci 53:196–203

CAS  Google Scholar 

Wan KC, Evans JH (1999) Free radical involvement in hypertrophic scar formation. Free Radic Biol Med 26:603–608. https://doi.org/10.1016/s0891-5849(98)00245-7

Article  CAS  Google Scholar 

Weber RA et al (2020) Maintaining ironhomeostasis is the key role of lysosomal acidity for cell proliferation. Mol Cell 77:645-655.e647. https://doi.org/10.1016/j.molcel.2020.01.003

Article  CAS  Google Scholar 

Wei Y et al (2021) LncRNA TRHDE-AS1 inhibit the scar fibroblasts proliferation via miR-181a-5p/PTEN axis. J Mol Histol 52:419–426. https://doi.org/10.1007/s10735-021-09968-y

Article  CAS  Google Scholar 

Yanatori I, Kishi F (2019) DMT1 and iron transport. Free Radic Biol Med 133:55–63. https://doi.org/10.1016/j.freeradbiomed.2018.07.020

Article  CAS  Google Scholar 

Zhang Q, Tao K, Huang W, Tian Y, Liu X (2013) Elevated expression of pleiotrophin in human hypertrophic scars. J Mol Histol 44:91–96. https://doi.org/10.1007/s10735-012-9453-8

Article  CAS  Google Scholar 

Zhang J, Li Y, Bai X, Li Y, Shi J, Hu D (2018) Recent advances in hypertrophic scar. Histol Histopathol 33:27–39. https://doi.org/10.14670/HH-11-908

Article  Google Scholar 

Zhao B et al (2017) Exosomes derived from human amniotic epithelial cells accelerate wound healing and inhibit scar formation. J Mol Histol 48:121–132. https://doi.org/10.1007/s10735-017-9711-x

Article  CAS  Google Scholar 

Zhao B et al (2018) Exosomal microRNAs derived from human amniotic epithelial cells accelerate wound healing by promoting the proliferation and migration of fibroblasts. Stem Cells Int 2018:5420463. https://doi.org/10.1155/2018/5420463

Article  CAS  Google Scholar 

Zhu Y et al (2021) Clioquinol attenuates pulmonary fibrosis through inactivation of fibroblasts via iron chelation. Am J Respir Cell Mol Biol 65:189–200. https://doi.org/10.1165/rcmb.2020-0279OC

Article  CAS  Google Scholar 

留言 (0)

沒有登入
gif