Possible role of combined therapy targeting MET and pro-HGF activation for renal cell carcinoma: analysis by human HGF-producing SCID mice

Escudier B, Powles T, Motzer RJ, et al. Cabozantinib, a new standard of care for patients with advanced renal cell carcinoma and bone metastases? Subgroup analysis of the METEOR trial. J Clin Oncol Off J Am Soc Clin Oncol. 2018;36(8):765–72. https://doi.org/10.1200/jco.2017.74.7352.

Article  CAS  Google Scholar 

Abdelaziz A, Vaishampayan U. Cabozantinib for renal cell carcinoma: current and future paradigms. Curr Treat Options Oncol. 2017;18(3):18. https://doi.org/10.1007/s11864-017-0444-6.

Article  Google Scholar 

Motzer RJ, Powles T, Burotto M, et al. Nivolumab plus cabozantinib versus sunitinib in first-line treatment for advanced renal cell carcinoma (CheckMate 9ER): long-term follow-up results from an open-label, randomised, phase 3 trial. Lancet Oncol. 2022;23(7):888–98. https://doi.org/10.1016/s1470-2045(22)00290-x.

Article  CAS  Google Scholar 

Kataoka H, Kawaguchi M, Fukushima T, Shimomura T. Hepatocyte growth factor activator inhibitors (HAI-1 and HAI-2): emerging key players in epithelial integrity and cancer. Pathol Int. 2018;68(3):145–58. https://doi.org/10.1111/pin.12647.

Article  CAS  Google Scholar 

Mukai S, Yamasaki K, Fujii M, et al. Dysregulation of type II transmembrane serine proteases and ligand-dependent activation of MET in urological cancers. Int J Mol Sci. 2020. https://doi.org/10.3390/ijms21082663.

Article  Google Scholar 

Albiges L, Guegan J, Le Formal A, et al. MET is a potential target across all papillary renal cell carcinomas: result from a large molecular study of pRCC with CGH array and matching gene expression array. Clin Cancer Res Off J Am Assoc Cancer Res. 2014;20(13):3411–21. https://doi.org/10.1158/1078-0432.ccr-13-2173.

Article  CAS  Google Scholar 

Zhao H, Nolley R, Chan AMW, Rankin EB, Peehl DM. Cabozantinib inhibits tumor growth and metastasis of a patient-derived xenograft model of papillary renal cell carcinoma with MET mutation. Cancer Biol Ther. 2017;18(11):863–71. https://doi.org/10.1080/15384047.2016.1219816.

Article  CAS  Google Scholar 

Betsunoh H, Mukai S, Akiyama Y, et al. Clinical relevance of hepsin and hepatocyte growth factor activator inhibitor type 2 expression in renal cell carcinoma. Cancer Sci. 2007;98(4):491–8. https://doi.org/10.1111/j.1349-7006.2007.00412.x.

Article  CAS  Google Scholar 

Macher-Goeppinger S, Keith M, Endris V, et al. MET expression and copy number status in clear-cell renal cell carcinoma: prognostic value and potential predictive marker. Oncotarget. 2017;8(1):1046–57. https://doi.org/10.18632/oncotarget.13540.

Article  Google Scholar 

Yamasaki K, Mukai S, Sugie S, et al. Dysregulated HAI-2 plays an important role in renal cell carcinoma bone metastasis through ligand-dependent MET phosphorylation. Cancers. 2018. https://doi.org/10.3390/cancers10060190.

Article  Google Scholar 

Morris MR, Gentle D, Abdulrahman M, et al. Tumor suppressor activity and epigenetic inactivation of hepatocyte growth factor activator inhibitor type 2/SPINT2 in papillary and clear cell renal cell carcinoma. Can Res. 2005;65(11):4598–606. https://doi.org/10.1158/0008-5472.can-04-3371.

Article  CAS  Google Scholar 

Roversi FM, Olalla Saad ST, Machado-Neto JA. Serine peptidase inhibitor Kunitz type 2 (SPINT2) in cancer development and progression. Biomed Pharmacother. 2018;101:278–86. https://doi.org/10.1016/j.biopha.2018.02.100.

Article  CAS  Google Scholar 

Ai J, Chen Y, Peng X, Ji Y, et al. Preclinical evaluation of SCC244 (Glumetinib), a novel, potent, and highly selective inhibitor of c-Met in MET-dependent cancer models. Mol Cancer Ther. 2018;17(4):751–62. https://doi.org/10.1158/1535-7163.mct-17-0368.

Article  CAS  Google Scholar 

Suda K, Mizuuchi H, Maehara Y, Mitsudomi T. Acquired resistance mechanisms to tyrosine kinase inhibitors in lung cancer with activating epidermal growth factor receptor mutation–diversity, ductility, and destiny. Cancer Metastasis Rev. 2012;31(3–4):807–14. https://doi.org/10.1007/s10555-012-9391-7.

Article  CAS  Google Scholar 

Owusu BY, Galemmo R, Janetka J, Klampfer L. Hepatocyte growth factor, a key tumor-promoting factor in the tumor microenvironment. Cancers. 2017. https://doi.org/10.3390/cancers9040035.

Article  Google Scholar 

Koinis F, Corn P, Parikh N, et al. Resistance to MET/VEGFR2 inhibition by cabozantinib is mediated by YAP/TBX5-dependent induction of FGFR1 in castration-resistant prostate cancer. Cancers. 2020. https://doi.org/10.3390/cancers12010244.

Article  Google Scholar 

Cruickshanks N, Zhang Y, Hine S, et al. Discovery and therapeutic exploitation of mechanisms of resistance to MET inhibitors in glioblastoma. Clin Cancer Res Off J Am Assoc Cancer Res. 2019;25(2):663–73. https://doi.org/10.1158/1078-0432.ccr-18-0926.

Article  CAS  Google Scholar 

Pennacchietti S, Cazzanti M, Bertotti A, et al. Microenvironment-derived HGF overcomes genetically determined sensitivity to anti-MET drugs. Can Res. 2014;74(22):6598–609. https://doi.org/10.1158/0008-5472.can-14-0761.

Article  CAS  Google Scholar 

Owusu BY, Thomas S, Venukadasula P, et al. Targeting the tumor-promoting microenvironment in MET-amplified NSCLC cells with a novel inhibitor of pro-HGF activation. Oncotarget. 2017;8(38):63014–25. https://doi.org/10.18632/oncotarget.18260.

Article  Google Scholar 

Rotow JK, Gui P, Wu W, et al. Co-occurring alterations in the RAS-MAPK pathway limit response to MET inhibitor treatment in MET Exon 14 skipping mutation-positive lung cancer. Clin Cancer Res Off J Am Assoc Cancer Res. 2020;26(2):439–49. https://doi.org/10.1158/1078-0432.ccr-19-1667.

Article  CAS  Google Scholar 

Fujino T, Kobayashi Y, Suda K, et al. Sensitivity and resistance of MET Exon 14 mutations in lung cancer to eight MET tyrosine kinase inhibitors in vitro. J Thorac Oncol Off Publ Int Assoc Study Lung Cancer. 2019;14(10):1753–65. https://doi.org/10.1016/j.jtho.2019.06.023.

Article  CAS  Google Scholar 

Owusu BY, Bansal N, Venukadasula PK, et al. Inhibition of pro-HGF activation by SRI31215, a novel approach to block oncogenic HGF/MET signaling. Oncotarget. 2016;7(20):29492–506. https://doi.org/10.18632/oncotarget.8785.

Article  Google Scholar 

Venukadasula PK, Owusu BY, Bansal N, Ross LJ, et al. Design and synthesis of nonpeptide inhibitors of hepatocyte growth factor activation. ACS Med Chem Lett. 2016;7(2):177–81. https://doi.org/10.1021/acsmedchemlett.5b00357.

Article  CAS  Google Scholar 

Zhang YW, Su Y, Lanning N, et al. Enhanced growth of human met-expressing xenografts in a new strain of immunocompromised mice transgenic for human hepatocyte growth factor/scatter factor. Oncogene. 2005;24(1):101–6. https://doi.org/10.1038/sj.onc.1208181.

Article  CAS  Google Scholar 

Kawaguchi T, Qin L, Shimomura T, et al. Purification and cloning of hepatocyte growth factor activator inhibitor type 2, a Kunitz-type serine protease inhibitor. J Biol Chem. 1997;272(44):27558–64. https://doi.org/10.1074/jbc.272.44.27558.

Article  CAS  Google Scholar 

Marlor CW, Delaria KA, Davis G, Muller DK, Greve JM, Tamburini PP. Identification and cloning of human placental bikunin, a novel serine protease inhibitor containing two Kunitz domains. J Biol Chem. 1997;272(18):12202–8. https://doi.org/10.1074/jbc.272.18.12202.

Article  CAS  Google Scholar 

Itoh H, Yamauchi M, Kataoka H, Hamasuna R, Kitamura N, Koono M. Genomic structure and chromosomal localization of the human hepatocyte growth factor activator inhibitor type 1 and 2 genes. Eur J Biochem. 2000;267(11):3351–9. https://doi.org/10.1046/j.1432-1327.2000.01368.x.

Article  CAS  Google Scholar 

留言 (0)

沒有登入
gif