ARHGAP6 inhibits bladder cancer cell viability, migration, and invasion via β-catenin signaling and enhances mitomycin C sensitivity

Burger M, Catto JW, Dalbagni G, et al. Epidemiology and risk factors of urothelial bladder cancer. Eur Urol. 2013;63(2):234–41.

Google Scholar 

Faltas BM, Prandi D, Tagawa ST, et al. Clonal evolution of chemotherapy-resistant urothelial carcinoma. Nat Genet. 2016;48(12):1490–9.

CAS  Google Scholar 

Lee HW, Lee HH, Park EY, et al. Clinical efficacy of neoadjuvant intravesical mitomycin-C therapy immediately before transurethral resection of bladder tumor in patients with nonmuscle-invasive bladder cancer: preliminary results of a prospective, randomized phase II study. J Urol. 2023;209(1):131–9.

Google Scholar 

Bakhshpour M, Yavuz H, Denizli A. Controlled release of mitomycin C from PHEMAH-Cu(II) cryogel membranes. Artif Cells Nanomed Biotechnol. 2018;46(sup1):946–54.

CAS  Google Scholar 

Hegmann L, Sturm S, Niegisch G, Windolf J, Suschek CV. Enhancement of human bladder carcinoma cell chemosensitivity to Mitomycin C through quasi-monochromatic blue light (λ = 453 ± 10 nm). J Photochem Photobiol B. 2022;236: 112582.

CAS  Google Scholar 

Wang SC, Yu CY, Wu YC, Chang YC, Chen SL, Sung WW. Chidamide and mitomycin C exert synergistic cytotoxic effects against bladder cancer cells in vitro and suppress tumor growth in a rat bladder cancer model. Cancer Lett. 2022;530:8–15.

CAS  Google Scholar 

Deng L, Jin K, Zhou X, et al. Blockade of integrin signaling reduces chemotherapy-induced premature senescence in collagen cultured bladder cancer cells. Precis Clin Med. 2022;5(2): pbac007.

Google Scholar 

Shetty R, Kumar NR, Subramani M, et al. Safety and efficacy of combination of suberoylamilide hydroxyamic acid and mitomycin C in reducing pro-fibrotic changes in human corneal epithelial cells. Sci Rep. 2021;11(1):4392.

CAS  Google Scholar 

Schwartz M. Rho signalling at a glance. J Cell Sci. 2004;117(Pt 23):5457–8.

CAS  Google Scholar 

Qi L, Sun B, Yang B, Lu S. circRNA RPPH1 facilitates the aggravation of breast cancer development by regulating miR-542-3p/ARHGAP1 pathway. Cancer Biother Radiopharm. 2022;37(8):708–19.

CAS  Google Scholar 

Li Y, Wang NX, Yin C, Jiang SS, Li JC, Yang SY. RNA editing enzyme ADAR1 regulates METTL3 in an editing dependent manner to promote breast cancer progression via METTL3/ARHGAP5/YTHDF1 axis. Int J Mol Sci. 2022;23(17):9656.

CAS  Google Scholar 

Wong DCP, Pan CQ, Er SY, et al. The scaffold RhoGAP protein ARHGAP8/ BPGAP1 synchronizes Rac and Rho signaling to facilitate cell migration. Mol Biol Cell. 2023. https://doi.org/10.1091/mbc.E21-03-0099.

Article  Google Scholar 

Sun L, Zhang Y, Lou J. ARHGAP9 siRNA inhibits gastric cancer cell proliferation and EMT via inactivating Akt, p38 signaling and inhibiting MMP2 and MMP9. Int J Clin Exp Pathol. 2017;10(12):11979–85.

Google Scholar 

Wang Z, Yao L, Li Y, et al. miR-337-3p inhibits gastric tumor metastasis by targeting ARHGAP10. Mol Med Rep. 2020;21(2):705–19.

CAS  Google Scholar 

Wang X, Zhang L, Liang Q, et al. DUSP5P1 promotes gastric cancer metastasis and platinum drug resistance. Oncogenesis. 2022;11(1):66.

Google Scholar 

Yang C, Mou Z, Wu S, et al. High-throughput sequencing identified circular RNA circUBE2K mediating RhoA associated bladder cancer phenotype via regulation of miR-516b-5p/ARHGAP5 axis. Cell Death Dis. 2021;12(8):719.

CAS  Google Scholar 

Li JP, Liu Y, Yin YH. ARHGAP1 overexpression inhibits proliferation, migration and invasion of C-33A and SiHa cell lines. Onco Targets Ther. 2017;10:691–701.

CAS  Google Scholar 

Li J, Liu Y, Yin Y. Inhibitory effects of Arhgap6 on cervical carcinoma cells. Tumour Biol. 2016;37(2):1411–25.

CAS  Google Scholar 

Li P, Lv H, Xu M, Zang B, Ma Y. ARHGAP6 promotes apoptosis and inhibits glycolysis in lung adenocarcinoma through STAT3 signaling pathway. Cancer Manag Res. 2020;12:9665–78.

CAS  Google Scholar 

Liu Z, Cui Y, Wang S, et al. MiR-96-5p is an oncogene in lung adenocarcinoma and facilitates tumor progression through ARHGAP6 downregulation. J Appl Genet. 2021;62(4):631–8.

CAS  Google Scholar 

Lin LL, Yang F, Zhang DH, Hu C, Yang S, Chen XQ. ARHGAP10 inhibits the epithelial–mesenchymal transition of non-small cell lung cancer by inactivating PI3K/Akt/GSK3β signaling pathway. Cancer Cell Int. 2021;21(1):320.

CAS  Google Scholar 

Ji W, Zhang L, Zhu H. GATA binding protein 5 (GATA5) induces Rho GTPase activating protein 9 (ARHGAP9) to inhibit the malignant process of lung adenocarcinoma cells. Bioengineered. 2022;13(2):2878–88.

CAS  Google Scholar 

Sun J, Zhao X, Jiang H, et al. ARHGAP9 inhibits colorectal cancer cell proliferation, invasion and EMT via targeting PI3K/AKT/mTOR signaling pathway. Tissue Cell. 2022;77: 101817.

CAS  Google Scholar 

Liu L, Xie D, Xie H, et al. ARHGAP10 inhibits the proliferation and metastasis of CRC cells via blocking the activity of RhoA/AKT signaling pathway. Onco Targets Ther. 2019;12:11507–16.

CAS  Google Scholar 

Sun MY, Song YN, Zhang M, Zhang CY, Zhang LJ, Zhang H. Ginsenoside Rg3 inhibits the migration and invasion of liver cancer cells by increasing the protein expression of ARHGAP9. Oncol Lett. 2019;17(1):965–73.

CAS  Google Scholar 

Zhang H, Tang QF, Sun MY, et al. ARHGAP9 suppresses the migration and invasion of hepatocellular carcinoma cells through up-regulating FOXJ2/E-cadherin. Cell Death Dis. 2018;9(9):916.

Google Scholar 

Lee D. miR-769-5p is associated with prostate cancer recurrence and modulates proliferation and apoptosis of cancer cells. Exp Ther Med. 2021;21(4):335.

CAS  Google Scholar 

Shen Y, Chen G, Gao H, et al. miR-939-5p contributes to the migration and invasion of pancreatic cancer by targeting ARHGAP4. Onco Targets Ther. 2020;13:389–99.

CAS  Google Scholar 

Seng TJ, Low JS, Li H, et al. The major 8p22 tumor suppressor DLC1 is frequently silenced by methylation in both endemic and sporadic nasopharyngeal, esophageal, and cervical carcinomas, and inhibits tumor cell colony formation. Oncogene. 2007;26(6):934–44.

CAS  Google Scholar 

Hall A. Rho family GTPases. Biochem Soc Trans. 2012;40(6):1378–82.

CAS  Google Scholar 

Chang HR, Huang HP, Kao YL, et al. The suppressive effect of Rho kinase inhibitor, Y-27632, on oncogenic Ras/RhoA induced invasion/migration of human bladder cancer TSGH cells. Chem Biol Interact. 2010;183(1):172–80.

CAS  Google Scholar 

Kim JG, Mahmud S, Min JK, et al. RhoA GTPase phosphorylated at tyrosine 42 by src kinase binds to β-catenin and contributes transcriptional regulation of vimentin upon Wnt3A. Redox Biol. 2021;40: 101842.

CAS  Google Scholar 

Garg M, Maurya N. WNT/beta-catenin signaling in urothelial carcinoma of bladder. World J Nephrol. 2019;8(5):83–94.

Google Scholar 

Zhong Z, Virshup DM. Wnt signaling and drug resistance in cancer. Mol Pharmacol. 2019;97(2):72–89.

Google Scholar 

Wu Y, Xu M, He R, Xu K, Ma Y. ARHGAP6 regulates the proliferation, migration and invasion of lung cancer cells. Oncol Rep. 2019;41(4):2281–888.

CAS  Google Scholar 

Krakhmal NV, Zavyalova MV, Denisov EV, Vtorushin SV, Perelmuter VM. Cancer invasion: patterns and mechanisms. Acta Nat. 2015;7(2):17–28.

CAS  Google Scholar 

Prakash SK, Paylor R, Jenna S, et al. Functional analysis of ARHGAP6, a novel GTPase-activating protein for RhoA. Hum Mol Genet. 2000;9(4):477–88.

CAS  Google Scholar 

Kang WK, Lee I, Park C. Characterization of RhoA-mediated chemoresistance in gastric cancer cells. Cancer Res Treat. 2005;37(4):251–6.

Google Scholar 

Shu Y, Zhang W, Hou Q, et al. Prognostic significance of frequent CLDN18-ARHGAP26/6 fusion in gastric signet-ring cell cancer. Nat Commun. 2018;9(1):2447.

Google Scholar 

Zhang WH, Zhang SY, Hou QQ, et al. The significance of the CLDN18-ARHGAP fusion gene in gastric cancer: a systematic review and meta-analysis. Front Oncol. 2020;10:1214.

Google Scholar 

Yao F, Kausalya JP, Sia YY, et al. Recurrent fusion genes in gastric cancer: CLDN18-ARHGAP26 induces loss of epithelial integrity. Cell Rep. 2015;12(2):272–85.

CAS  Google Scholar 

Chen Y, Zhu G, Wu K, et al. FGF2-mediated reciprocal tumor cell-endothelial cell interplay contributes to the growth of chemoresistant cells: a potential mechanism for superficial bladder cancer recurrence. Tumour Biol. 2016;37(4):4313–21.

CAS  Google Scholar 

Chang JC. Cancer stem cells: role in tumor growth, recurrence, metastasis, and treatment resistance. Medicine (Baltimore). 2016;95(1 Suppl 1):S20–5.

CAS  Google Scholar 

Housman G, Byler S, Heerboth S, et al. Drug resistance in cancer: an overview. Cancers (Basel). 2014;6(3):1769–92.

Google Scholar 

Zhan T, Rindtorff N, Boutros M. Wnt signaling in cancer. Oncogene. 2017;36(11):1461–73.

CAS  Google Scholar 

Schlessinger K, Hall A, Tolwinski N. Wnt signaling pathways meet Rho GTPases. Genes Dev. 2009;23(3):265–77.

CAS  Google Scholar 

Rossol-Allison J, Stemmle LN, Swenson-Fields KI, et al. Rho GTPase activity modulates Wnt3a/beta-catenin signaling. Cell Signal. 2009;21(11):1559–68.

CAS  Google Scholar 

Amin E, Jaiswal M, Derewenda U, et al. Deciphering the molecular and functional basis of RHOGAP family proteins: a systematic approach toward selective inactivation of rho family proteins. J Biol Chem. 2016;291(39):20353–71.

CAS  Google Scholar 

留言 (0)

沒有登入
gif