Zonated quantification of immunohistochemistry in normal and steatotic livers

Droin C, El KJ, Bahar Halpern K et al (2021) Space-time logic of liver gene expression at sub-lobular scale. Nat Metab 3:43–58. https://doi.org/10.1038/s42255-020-00323-1

Article  CAS  Google Scholar 

Seki S, Kitada T, Yamada T et al (2002) In situ detection of lipid peroxidation and oxidative DNA damage in non-alcoholic fatty liver diseases. J Hepatol 37:56–62. https://doi.org/10.1016/S0168-8278(02)00073-9

Article  CAS  Google Scholar 

Meyerholz DK, Beck AP (2018) Principles and approaches for reproducible scoring of tissue stains in research. Lab Investig 98:844–855. https://doi.org/10.1038/s41374-018-0057-0

Article  Google Scholar 

Walker RA (2006) Quantification of immunohistochemistry - issues concerning methods, utility and semiquantitative assessment I. Histopathology 49:406–410. https://doi.org/10.1111/j.1365-2559.2006.02514.x

Article  CAS  Google Scholar 

Lau C, Kalantari B, Batts KP et al (2021) The Voronoi theory of the normal liver lobular architecture and its applicability in hepatic zonation. Sci Rep 11:9343. https://doi.org/10.1038/s41598-021-88699-2

Article  CAS  Google Scholar 

Taylor-Weiner A, Pokkalla H, Han L et al (2021) A machine learning approach enables quantitative measurement of liver histology and disease monitoring in NASH. Hepatology 74:133–147. https://doi.org/10.1002/hep.31750

Article  Google Scholar 

Setiawan VW, Stram DO, Porcel J et al (2016) Prevalence of chronic liver disease and cirrhosis by underlying cause in understudied ethnic groups: the multiethnic cohort. Hepatology 64:1969–1977. https://doi.org/10.1002/hep.28677

Article  Google Scholar 

Goldberg D, Ditah IC, Saeian K et al (2017) Changes in the prevalence of hepatitis C virus infection, nonalcoholic steatohepatitis, and alcoholic liver disease among patients with cirrhosis or liver failure on the waitlist for liver transplantation. Gastroenterology 152:1090–1099. https://doi.org/10.1053/j.gastro.2017.01.003

Article  Google Scholar 

Wong RJ, Aguilar M, Cheung R et al (2015) Nonalcoholic steatohepatitis is the second leading etiology of liver disease among adults awaiting liver transplantation in the United States. Gastroenterology 148:547–555. https://doi.org/10.1053/j.gastro.2014.11.039

Article  Google Scholar 

Younossi ZM, Koenig AB, Abdelatif D et al (2016) Global epidemiology of nonalcoholic fatty liver disease—meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology 64:73–84. https://doi.org/10.1002/hep.28431

Article  Google Scholar 

Ghallab A, Myllys M, Friebel A et al (2021) Spatio-temporal multiscale analysis of western diet-fed mice reveals a translationally relevant sequence of events during NAFLD progression. Cells 10:2516. https://doi.org/10.3390/cells10102516

Article  CAS  Google Scholar 

Raleigh JA, Koch CJ (1990) Importance of thiols in the reductive binding of 2-nitroimidazoles to macromolecules. Biochem Pharmacol 40:2457–2464. https://doi.org/10.1016/0006-2952(90)90086-Z

Article  CAS  Google Scholar 

Percie N, Hurst V, Ahluwalia A, et al (2020) The ARRIVE guidelines 2.0: updated guidelines for reporting animal research. BMJ Open Sci 1–7. https://doi.org/10.1136/bmjos-2020-100115

Schindelin J, Arganda-Carreras I, Frise E et al (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9:676–682. https://doi.org/10.1038/nmeth.2019

Article  CAS  Google Scholar 

Ruifrok AC, Johnston DA (2001) Quantification of histochemical staining by color deconvolution. Anal Quant Cytol Histol 23(291–299):10–27

Google Scholar 

Doyle W (1962) Operations useful for similarity-invariant pattern recognition. J ACM 9:259–267. https://doi.org/10.1145/321119.321123

Article  Google Scholar 

Munsterman ID, van Erp M, Weijers G et al (2019) A novel automatic digital algorithm that accurately quantifies steatosis in NAFLD on histopathological whole-slide images. Cytom Part B 96:521–528. https://doi.org/10.1002/cyto.b.21790

Article  CAS  Google Scholar 

Schwen LO, Homeyer A, Schwier M et al (2016) Zonated quantification of steatosis in an entire mouse liver. Comput Biol Med 73:108–118. https://doi.org/10.1016/j.compbiomed.2016.04.004

Article  Google Scholar 

Panday R, Monckton CP, Khetani SR (2022) The role of liver zonation in physiology, regeneration, and disease. Semin Liver Dis 42:1–16. https://doi.org/10.1055/s-0041-1742279

Article  Google Scholar 

R Core Team (2018) R: a language and environment for statistical computinng. In: R Found. Stat. Comput. Vienna. https://www.r-project.org

Landis JR, Koch GG (1977) The measurement of observer agreement for categorical data. Biometrics 33:159–174. https://doi.org/10.2307/2529310

Article  CAS  Google Scholar 

Matsumoto M, Hada N, Sakamaki Y et al (2013) An improved mouse model that rapidly develops fibrosis in non-alcoholic steatohepatitis. Int J Exp Pathol 94:93–103. https://doi.org/10.1111/iep.12008

Article  CAS  Google Scholar 

Kietzmann T (2019) Liver zonation in health and disease: hypoxia and hypoxia-inducible transcription factors as concert masters. Int J Mol Sci 20:2347. https://doi.org/10.3390/ijms20092347

Article  CAS  Google Scholar 

Mantena SK, Vaughn DP, Andringa KK et al (2009) High fat diet induces dysregulation of hepatic oxygen gradients and mitochondrial function in vivo. Biochem J 417:183–193. https://doi.org/10.1042/BJ20080868

Article  Google Scholar 

Meng L, Goto M, Tanaka H et al (2021) Decreased portal circulation augments fibrosis and ductular reaction in nonalcoholic fatty liver disease in mice. Am J Pathol 191:1580–1591. https://doi.org/10.1016/j.ajpath.2021.06.001

Article  CAS  Google Scholar 

Ben-Moshe S, Shapira Y, Moor AE et al (2019) Spatial sorting enables comprehensive characterization of liver zonation. Nat Metab 1:899–911. https://doi.org/10.1038/s42255-019-0109-9

Article  CAS  Google Scholar 

Paris J, Henderson NC (2022) Liver zonation, revisited. Hepatology 76:1219–1230. https://doi.org/10.1002/hep.32408

Article  Google Scholar 

Cunningham RP, Porat-Shliom N (2021) Liver zonation – revisiting old questions with new technologies. Front Physiol 12:1–17. https://doi.org/10.3389/fphys.2021.732929

Article  Google Scholar 

Czaja AJ, Carpenter HA (1993) Sensitivity, specificity, and predictability of biopsy interpretations in chronic hepatitis. Gastroenterology 105:1824–1832. https://doi.org/10.1016/0016-5085(93)91081-R

Article  CAS  Google Scholar 

Meyerholz DK, Beck AP (2018) Fundamental concepts for semiquantitative tissue scoring in translational research. ILAR J 59:13–17. https://doi.org/10.1093/ilar/ily025

Article  CAS  Google Scholar 

McCarty K, Szabo E, Flowers J et al (1986) Use of a monoclonal anti-estrogen receptor antibody in the immunohistochemical evaluation of human tumors. Cancer Res 46:4244–4248

Google Scholar 

Gavrielides MA, Gallas BD, Lenz P et al (2011) Observer variability in the interpretation of HER2/neu immunohistochemical expression with unaided and computer-aided digital microscopy. Arch Pathol Lab Med 135:233–242. https://doi.org/10.5858/135.2.233

Article  Google Scholar 

Skaland I, Øvestad I, Janssen EAM et al (2008) Digital image analysis improves the quality of subjective HER-2 expression scoring in breast cancer. Appl Immunohistochem Mol Morphol 16:185–190. https://doi.org/10.1097/PAI.0b013e318059c20c

Article  CAS  Google Scholar 

Rimm DL, Giltnane JM, Moeder C et al (2007) Bimodal population or pathologist artifact? [1]. J Clin Oncol 25:2487–2488. https://doi.org/10.1200/JCO.2006.07.7537

Article  Google Scholar 

Camp RL, Dolled-Filhart M, King BL, Rimm DL (2003) Quantitative analysis of breast cancer tissue microarrays shows that both high and normal levels of HER2 expression are associated with poor outcome. Cancer Res 63:1445–1448

CAS  Google Scholar 

Liu F, Goh GBB, Tiniakos D et al (2020) qFIBS: an automated technique for quantitative evaluation of fibrosis, inflammation, ballooning, and steatosis in patients with nonalcoholic steatohepatitis. Hepatology 71:1953–1966. https://doi.org/10.1002/hep.30986

Article  CAS  Google Scholar 

Brunt EM, Clouston AD, Goodman Z et al (2022) Complexity of ballooned hepatocyte feature recognition: defining a training atlas for artificial intelligence-based imaging in NAFLD. J Hepatol 76:1030–1041. https://doi.org/10.1016/j.jhep.2022.01.011

Article  CAS  Google Scholar 

Forlano R, Mullish BH, Giannakeas N et al (2020) High-throughput, machine learning–based quantification of steatosis, inflammation, ballooning, and fibrosis in biopsies from patients with nonalcoholic fatty liver disease. Clin Gastroenterol Hepatol 18:2081–2090. https://doi.org/10.1016/j.cgh.2019.12.025

Article  Google Scholar 

Bosch J, Chung C, Carrasco-Zevallos OM et al (2021) A machine learning approach to liver histological evaluation predicts clinically significant portal hypertension in NASH cirrhosis. Hepatology 74:3146–3160. https://doi.org/10.1002/hep.32087

Article  CAS  Google Scholar 

Naoumov NV, Brees D, Loeffler J et al (2022) Digital pathology with artificial intelligence analyses provides greater insights into treatment-induced fibrosis regression in NASH. J Hepatol. https://doi.org/10.1016/j.jhep.2022.06.018.10.1016/j.jhep.2022.06.018

Article  Google Scholar 

Davison BA, Harrison SA, Cotter G et al (2020) Suboptimal reliability of liver biopsy evaluation has implications for randomized clinical trials. J Hepatol 73:1322–1332. https://doi.org/10.1016/j.jhep.2020.06.025

Article  CAS  Google Scholar 

Arteel GE, Iimuro Y, Yin M et al (1997) Chronic enteral ethanol treatment causes hypoxia in rat liver tissue in vivo. Hepatology 25:920–926. https://doi.org/10.1002/hep.510250422

Article  CAS  Google Scholar 

Zaidi M, Fu F, Cojocari D et al (2019) Quantitative visualization of hypoxia and proliferation gradients within histological tissue sections. Front Bioeng Biotechnol 7:1–9. https://doi.org/10.3389/fbioe.2019.00397

Article  Google Scholar 

Swartz JE, Smits HJG, Philippens MEP et al (2022) Correlation and colocalization of HIF-1α and pimonidazole staining for hypoxia in laryngeal squamous cell carcinomas: a digital, single-cell-based analysis. Oral Oncol 128:105862. https://doi.org/10.1016/j.oraloncology.2022.105862

Article  CAS  Google Scholar 

Podszun MC, Chung JY, Ylaya K et al (2020) 4-HNE immunohistochemistry and image analysis for detection of lipid peroxidation in human liver samples using vitamin e treatment in NAFLD as a proof of concept. J Histochem Cytochem 68:635–643. https://doi.org/10.1369/0022155420946402

Article  CAS  Google Scholar 

Francque S, Verrijken A, Mertens I et al (2010) Noncirrhotic human nonalcoholic fatty liver disease induces portal hypertension in relation to the histological degree of steatosis. Eur J Gastroenterol Hepatol 22:1449–1457. https://doi.org/10.1097/MEG.0b013e32833f14a1

Article  Google Scholar 

Parthasarathy G, Revelo X, Malhi H (

留言 (0)

沒有登入
gif