The role of platelets in immune-mediated inflammatory diseases

Scherlinger, M. et al. Worldwide trends in all-cause mortality of auto-immune systemic diseases between 2001 and 2014. Autoimmun. Rev. 19, 102531 (2020).

Article  CAS  Google Scholar 

Broen, J. C. A. & van Laar, J. M. Mycophenolate mofetil, azathioprine and tacrolimus: mechanisms in rheumatology. Nat. Rev. Rheumatol. 16, 167–178 (2020).

Article  CAS  Google Scholar 

Manzi, S. M. et al. Age-specific incidence rates of myocardial infarction and angina in women with systemic lupus erythematosus: comparison with the Framingham Study. Am. J. Epidemiol. 145, 408–415 (1997).

Article  CAS  Google Scholar 

Conrad, N. et al. Autoimmune diseases and cardiovascular risk: a population-based study on 19 autoimmune diseases and 12 cardiovascular diseases in 22 million individuals in the UK. Lancet 400, 733–743 (2022). This large population-based study reports that multiple IMIDs are associated with increased risk of a wide range of cardiovascular diseases.

Article  Google Scholar 

Gremmel, T., Frelinger, A. & Michelson, A. Platelet physiology. Semin. Thromb. Hemost. 42, 191–204 (2016).

Article  CAS  Google Scholar 

Luo, D. et al. Protective roles for fibrin, tissue factor, plasminogen activator inhibitor-1, and thrombin activatable fibrinolysis inhibitor, but not factor XI, during defense against the gram-negative bacterium Yersinia enterocolitica. J. Immunol. 187, 1866–1876 (2011).

Article  CAS  Google Scholar 

Gaertner, F. et al. Migrating platelets are mechano-scavengers that collect and bundle bacteria. Cell 171, 1368–1382.e23 (2017). This study shows that platelets actively patrol blood vessels to bind and bundle circulating bacteria, and promote neutrophil activation in infection.

Article  CAS  Google Scholar 

Maouia, A., Rebetz, J., Kapur, R. & Semple, J. W. The immune nature of platelets revisited. Transfus. Med. Rev. 34, 209–220 (2020).

Article  Google Scholar 

Marcoux, G., Laroche, A., Espinoza Romero, J. & Boilard, E. Role of platelets and megakaryocytes in adaptive immunity. Platelets 32, 340–351 (2021).

Article  CAS  Google Scholar 

Bai, M. et al. Mean platelet volume could reflect disease activity of adult patients with systemic lupus erythematosus. Clin. Lab. 62, 1317–1322 (2016).

Article  CAS  Google Scholar 

Khodashahi, M., Saadati, N., Rezaieyazdi, Z., Sahebari, M. & Saremi, Z. Evaluation of mean platelet volume in patients with rheumatoid arthritis and its relation with severity of disease. Rheumatol. Res. 4, 121–126 (2019).

Article  Google Scholar 

Masoumi, M. et al. Correlation of clinical signs and symptoms of Behçet’s disease with mean platelet volume (MPV) and red cell distribution width (RDW). Orphanet J. Rare Dis. 15, 297 (2020).

Article  Google Scholar 

Stenberg, P. E., Shuman, M. A., Levine, S. P. & Bainton, D. F. Redistribution of alpha-granules and their contents in thrombin- stimulated platelets. J. Cell Biol. 98, 748–760 (1984).

Article  CAS  Google Scholar 

Duffau, P. et al. Platelet CD154 potentiates interferon- secretion by plasmacytoid dendritic cells in systemic lupus erythematosus. Sci. Transl. Med. 2, 47ra63 (2010). This study shows that platelets interact with pDCs in SLE and promote their production of type I interferon through the CD40L–CD40 axis.

Article  Google Scholar 

Scherlinger, M. et al. Selectins impair regulatory T cell function and contribute to systemic lupus erythematosus pathogenesis. Sci. Transl. Med. 13, eabi4994 (2021). This study shows that platelets from patients with SLE interact with Tregcells through the P-selectin–PSGL1 axis, which results in FOXP3 downregulation and Tregcell dysfunction.

Article  CAS  Google Scholar 

Puhm, F., Boilard, E. & Machlus, K. R. Platelet extracellular vesicles: beyond the blood. Arterioscler. Thromb. Vasc. Biol. 41, 87–96 (2021).

CAS  Google Scholar 

Tessandier, N. et al. Platelets disseminate extracellular vesicles in lymph in rheumatoid arthritis. Arterioscler. Thromb. Vasc. Biol. 40, 929–942 (2020).

Article  CAS  Google Scholar 

Melki, I. et al. FcγRIIA expression aggravates nephritis and increases platelet activation in systemic lupus erythematosus in mice. Blood https://doi.org/10.1182/blood.2020004974 (2020).

Article  Google Scholar 

Melki, I. et al. Platelets release mitochondrial antigens in systemic lupus erythematosus. Sci. Transl. Med. 13, eaav5928 (2021). This study reports that activated platelets release mitochondria, either free or embedded in extracellular vesicles, that activate the immune system and participate in immune dysregulation in SLE.

Article  CAS  Google Scholar 

Ohyama, K. et al. Proteomic profiling of antigens in circulating immune complexes associated with each of seven autoimmune diseases. Clin. Biochem. 48, 181–185 (2015).

Article  CAS  Google Scholar 

Hubbard, J. J. et al. FcRn is a CD32a coreceptor that determines susceptibility to IgG immune complex-driven autoimmunity. J. Exp. Med. 217, e20200359 (2020).

Article  Google Scholar 

Qian, K. et al. Functional expression of IgA receptor FcαRI on human platelets. J. Leukoc. Biol. 84, 1492–1500 (2008).

Article  CAS  Google Scholar 

Joseph, M. et al. Expression and functions of the high-affinity IgE receptor on human platelets and megakaryocyte precursors. Eur. J. Immunol. 27, 2212–2218 (1997).

Article  CAS  Google Scholar 

Chalayer, E. et al. Fc receptors gone wrong: a comprehensive review of their roles in autoimmune and inflammatory diseases. Autoimmun. Rev. 21, 103016 (2022).

Article  CAS  Google Scholar 

Love, P. E. Antiphospholipid antibodies: anticardiolipin and the lupus anticoagulant in systemic lupus erythematosus (SLE) and in non-SLE disorders: prevalence and clinical significance. Ann. Intern. Med. 112, 682 (1990).

Article  CAS  Google Scholar 

Assous, N. et al. Prevalence of antiphospholipid antibodies in systemic sclerosis and association with primitive pulmonary arterial hypertension and endothelial injury. Clin. Exp. Rheumatol. 23, 199–204 (2005).

CAS  Google Scholar 

Fauchais, A. L. et al. Antiphospholipid antibodies in primary Sjögren’s syndrome: prevalence and clinical significance in a series of 74 patients. Lupus 13, 245–248 (2004).

Article  CAS  Google Scholar 

Zhang, W. et al. Anti-β2 glycoprotein I antibodies in complex with β2 glycoprotein I induce platelet activation via two receptors: apolipoprotein E receptor 2′ and glycoprotein I bα. Front. Med. 10, 76–84 (2016).

Article  Google Scholar 

Müller-Calleja, N. et al. Lipid presentation by the protein C receptor links coagulation with autoimmunity. Science 371, eabc0956 (2021).

Article  Google Scholar 

Kim, K.-J., Baek, I.-W., Yoon, C.-H., Kim, W.-U. & Cho, C.-S. Elevated levels of soluble CD40 ligand are associated with antiphospholipid antibodies in patients with systemic lupus erythematosus. Clin. Exp. Rheumatol. 35, 823–830 (2017).

Google Scholar 

Patsouras, M. D. et al. Elevated expression of platelet-derived chemokines in patients with antiphospholipid syndrome. J. Autoimmun. 65, 30–37 (2015).

Article  CAS  Google Scholar 

Provan, D. & Semple, J. W. Recent advances in the mechanisms and treatment of immune thrombocytopenia. eBioMedicine 76, 103820 (2022).

Article  CAS  Google Scholar 

Al-Samkari, H. et al. A modern reassessment of glycoprotein-specific direct platelet autoantibody testing in immune thrombocytopenia. Blood Adv. 4, 9–18 (2019).

Article  Google Scholar 

Kuwana, M., Kaburaki, J., Okazaki, Y., Miyazaki, H. & Ikeda, Y. Two types of autoantibody-mediated thrombocytopenia in patients with systemic lupus erythematosus. Rheumatology 45, 851–854 (2006).

Article  CAS  Google Scholar 

Czirják, L. et al. Anti-platelet antibodies against gpIIb/IIIa in systemic sclerosis. Clin. Exp. Rheumatol. 12, 527–529 (1994).

Google Scholar 

Hally, K., Fauteux-Daniel, S., Hamzeh-Cognasse, H., Larsen, P. & Cognasse, F. Revisiting platelets and Toll-like receptors (TLRs): at the interface of vascular immunity and thrombosis. Int. J. Mol. Sci. 21, 6150 (2020).

Article  CAS  Google Scholar 

Aslam, R. et al. Platelet Toll-like receptor expression modulates lipopolysaccharide-induced thrombocytopenia and tumor necrosis factor-alpha production in vivo. Blood 107, 637–641 (2006).

Article  CAS  Google Scholar 

Andonegui, G. et al. Platelets express functional Toll-like receptor-4. Blood 106, 2417–2423 (2005).

Article  CAS  Google Scholar 

Ward, J. R. et al. Agonists of toll-like receptor (TLR)2 and TLR4 are unable to modulate platelet activation by adenosine diphosphate and platelet activating factor. Thromb. Haemost. 94, 831–838 (2005).

Google Scholar 

Vogel, S. et al. Platelet-derived HMGB1 is a critical mediator of thrombosis. J. Clin. Invest. 125, 4638–4654 (2015).

Article  Google Scholar 

Koupenova, M. et al. Platelet-TLR7 mediates host survival and platelet count during viral infection in the absence of platelet-dependent thrombosis. Blood 124, 791–802 (2014).

Article  CAS  Google Scholar 

Brown, G. J. et al. TLR7 gain-of-function genetic variation causes human lupus. Nature 605, 349–356 (2022). This study shows that constitutive activation of TLR7 causes early and severe SLE in mice and humans.

Article  CAS  Google Scholar 

Becker, Y. et al. Autoantibodies in systemic lupus erythematosus target mitochondrial RNA. Front. Immunol. 10, 1026 (2019).

Article  CAS  Google Scholar 

Becker, Y. L., Julien, A.-S., Godbout, A., Boilard, É. & Fortin, P. R. Pilot study of anti-mitochondrial antibodies in antiphospholipid syndrome. Lupus 29, 1623–1629 (2020).

Article  CAS  Google Scholar 

Thon, J. N. et al. The functional role of TLR9 in human platelets. Blood 118, 366 (2011).

Article  Google Scholar 

Boudreau, L. H. et al. Platelets release mitochondria serving as substrate for bactericidal group IIA-secreted phospholipase A2 to promote inflammation. Blood 124, 2173–2183 (2014).

Article  CAS  Google Scholar 

Bjornevik, K. et al. Longitudinal analysis reveals high prevalence of Epstein-Barr virus associated with multiple sclerosis. Science 375, 296–301 (2022).

Article  CAS 

留言 (0)

沒有登入
gif