The Gut Microbiome, Microbial Metabolites, and Cardiovascular Disease in People Living with HIV

Trickey A, May MT, Vehreschild J-J, Obel N, Gill MJ, Crane HM, et al. Survival of HIV-positive patients starting antiretroviral therapy between 1996 and 2013: a collaborative analysis of cohort studies. The Lancet HIV. 2017;4(8):e349–56. https://doi.org/10.1016/S2352-3018(17)30066-8.

Article  Google Scholar 

Rasmussen LD, May MT, Kronborg G, Larsen CS, Pedersen C, Gerstoft J, et al. Time trends for risk of severe age-related diseases in individuals with and without HIV infection in Denmark: a nationwide population-based cohort study. Lancet HIV. 2015;2(7):e288–98. https://doi.org/10.1016/S2352-3018(15)00077-6.

Article  Google Scholar 

de Coninck Z, Hussain-Alkhateeb L, Bratt G, Ekström AM, Gisslén M, Petzold M, et al. Non-AIDS mortality is higher among successfully treated people living with HIV compared with matched HIV-negative control persons: a 15-year follow-up cohort study in Sweden. AIDS Patient Care STDS. 2018;32(8):297–305. https://doi.org/10.1089/apc.2018.0015.

Article  Google Scholar 

Farahani M, Mulinder H, Farahani A, Marlink R. Prevalence and distribution of non-AIDS causes of death among HIV-infected individuals receiving antiretroviral therapy: a systematic review and meta-analysis. Int J STD AIDS. 2017;28(7):636–50. https://doi.org/10.1177/0956462416632428.

Article  Google Scholar 

Althoff KN, Gebo KA, Moore RD, Boyd CM, Justice AC, Wong C, et al. Contributions of traditional and HIV-related risk factors on non-AIDS-defining cancer, myocardial infarction, and end-stage liver and renal diseases in adults with HIV in the USA and Canada: a collaboration of cohort studies. The Lancet HIV. 2019;6(2):e93–104. https://doi.org/10.1016/S2352-3018(18)30295-9.

Article  Google Scholar 

Shah ASV, Stelzle D, Lee KK, Beck EJ, Alam S, Clifford S, et al. Global burden of atherosclerotic cardiovascular disease in people living with HIV: systematic review and meta-analysis. Circulation. 2018;138(11):1100–12. https://doi.org/10.1161/circulationaha.117.033369.

Article  Google Scholar 

Freiberg MS, Chang CH, Skanderson M, Patterson OV, DuVall SL, Brandt CA, et al. Association between HIV infection and the risk of heart failure with reduced ejection fraction and preserved ejection fraction in the antiretroviral therapy era: results from the Veterans Aging Cohort Study. JAMA Cardiol. 2017;2(5):536–46. https://doi.org/10.1001/jamacardio.2017.0264.

Article  Google Scholar 

Feinstein MJ, Steverson AB, Ning H, Pawlowski AE, Schneider D, Ahmad FS, et al. Adjudicated heart failure in HIV‐infected and uninfected men and women. Journal of the American Heart Association. 2018;7(21):e009985. https://doi.org/10.1161/JAHA.118.009985.

Barnes RP, Lacson JC, Bahrami H. HIV infection and risk of cardiovascular diseases beyond coronary artery disease. Curr Atheroscler Rep. 2017;19(5):20. https://doi.org/10.1007/s11883-017-0652-3.

Article  Google Scholar 

Hsue PY, Waters DD. HIV infection and coronary heart disease: mechanisms and management. Nat Rev Cardiol. 2019;16(12):745–59. https://doi.org/10.1038/s41569-019-0219-9.

Article  Google Scholar 

Wagle A, Goerlich E, Post WS, Woldu B, Wu KC, Hays AG. HIV and global cardiovascular health. Curr Cardiol Rep. 2022. https://doi.org/10.1007/s11886-022-01741-1.

Article  Google Scholar 

Freiberg MS, Chang C-CH, Kuller LH, Skanderson M, Lowy E, Kraemer KL, et al. HIV infection and the risk of acute myocardial infarction. JAMA Int Med. 2013;173(8):614–22. https://doi.org/10.1001/jamainternmed.2013.3728.

Article  CAS  Google Scholar 

Hunt PW, Lee SA, Siedner MJ. Immunologic biomarkers, morbidity, and mortality in treated HIV infection. J Infect Dis. 2016;214(Suppl 2):S44-50. https://doi.org/10.1093/infdis/jiw275.

Article  CAS  Google Scholar 

Routy J-P, Mehraj V, Vyboh K, Cao W, Kema I, Jenabian M-A. Clinical relevance of kynurenine pathway in HIV/AIDS: an immune checkpoint at the crossroads of metabolism and inflammation. AIDS Rev. 2015;17(2):96–106.

Google Scholar 

Hunt PW, Sinclair E, Rodriguez B, Shive C, Clagett B, Funderburg N, et al. Gut epithelial barrier dysfunction and innate immune activation predict mortality in treated HIV infection. J Infect Dis. 2014;210(8):1228–38. https://doi.org/10.1093/infdis/jiu238.

Article  CAS  Google Scholar 

Tenorio AR, Zheng Y, Bosch RJ, Krishnan S, Rodriguez B, Hunt PW, et al. Soluble markers of inflammation and coagulation but not T-cell activation predict non-AIDS-defining morbid events during suppressive antiretroviral treatment. J Infect Dis. 2014;210(8):1248–59. https://doi.org/10.1093/infdis/jiu254.

Article  CAS  Google Scholar 

Peters BA, Moon JY, Hanna DB, Kutsch O, Fischl M, Moran CA, et al. T-cell immune dysregulation and mortality in women with HIV. J Infect Dis. 2021. https://doi.org/10.1093/infdis/jiab433.

Article  Google Scholar 

Trøseid M, Andersen GØ, Broch K, Hov JR. The gut microbiome in coronary artery disease and heart failure: current knowledge and future directions. eBioMedicine. 2020;52. https://doi.org/10.1016/j.ebiom.2020.102649

Koren O, Spor A, Felin J, Fåk F, Stombaugh J, Tremaroli V, et al. Human oral, gut, and plaque microbiota in patients with atherosclerosis. Proc Natl Acad Sci. 2011;108(supplement_1):4592–8. https://doi.org/10.1073/pnas.1011383107.

Article  Google Scholar 

Witkowski M, Weeks TL, Hazen SL. Gut microbiota and cardiovascular disease. Circ Res. 2020;127(4):553–70. https://doi.org/10.1161/CIRCRESAHA.120.316242.

Article  CAS  Google Scholar 

Wang Z, Klipfell E, Bennett BJ, Koeth R, Levison BS, DuGar B, et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature. 2011;472(7341):57–63. https://doi.org/10.1038/nature09922.

Article  CAS  Google Scholar 

Heianza Y, Ma W, Manson JE, Rexrode KM, Qi L. Gut microbiota metabolites and risk of major adverse cardiovascular disease events and death: a systematic review and meta-analysis of prospective studies. J Am Heart Assoc. 2017;6(7). https://doi.org/10.1161/jaha.116.004947.

Qi J, You T, Li J, Pan T, Xiang L, Han Y, et al. Circulating trimethylamine N-oxide and the risk of cardiovascular diseases: a systematic review and meta-analysis of 11 prospective cohort studies. J Cell Mol Med. 2018;22(1):185–94. https://doi.org/10.1111/jcmm.13307.

Article  CAS  Google Scholar 

Schiattarella GG, Sannino A, Toscano E, Giugliano G, Gargiulo G, Franzone A, et al. Gut microbe-generated metabolite trimethylamine-N-oxide as cardiovascular risk biomarker: a systematic review and dose-response meta-analysis. Eur Heart J. 2017;38(39):2948–56. https://doi.org/10.1093/eurheartj/ehx342.

Article  CAS  Google Scholar 

Koeth RA, Wang Z, Levison BS, Buffa JA, Org E, Sheehy BT, et al. Intestinal microbiota metabolism of l-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat Med. 2013;19(5):576–85. https://doi.org/10.1038/nm.3145.

Article  CAS  Google Scholar 

Skye SM, Zhu W, Romano KA, Guo CJ, Wang Z, Jia X, et al. Microbial transplantation with human gut commensals containing CutC is sufficient to transmit enhanced platelet reactivity and thrombosis potential. Circ Res. 2018;123(10):1164–76. https://doi.org/10.1161/circresaha.118.313142.

Article  CAS  Google Scholar 

Zhu W, Gregory JC, Org E, Buffa JA, Gupta N, Wang Z, et al. Gut microbial metabolite TMAO enhances platelet hyperreactivity and thrombosis risk. Cell. 2016;165(1):111–24. https://doi.org/10.1016/j.cell.2016.02.011.

Article  CAS  Google Scholar 

Seldin MM, Meng Y, Qi H, Zhu W, Wang Z, Hazen SL, et al. Trimethylamine N-oxide promotes vascular inflammation through signaling of mitogen-activated protein kinase and nuclear factor-κB. J Am Heart Assoc. 2016;5(2). https://doi.org/10.1161/jaha.115.002767.

Guzior DV, Quinn RA. Review: microbial transformations of human bile acids. Microbiome. 2021;9(1):140. https://doi.org/10.1186/s40168-021-01101-1.

Article  CAS  Google Scholar 

Pushpass R-AG, Alzoufairi S, Jackson KG, Lovegrove JA. Circulating bile acids as a link between the gut microbiota and cardiovascular health: impact of prebiotics, probiotics and polyphenol-rich foods. Nutr Res Rev. 2021:1–20. https://doi.org/10.1017/S0954422421000081.

Schaap FG, Trauner M, Jansen PL. Bile acid receptors as targets for drug development. Nat Rev Gastroenterol Hepatol. 2014;11(1):55–67. https://doi.org/10.1038/nrgastro.2013.151.

Article  CAS  Google Scholar 

Rodríguez-Morató J, Matthan NR. Nutrition and gastrointestinal microbiota, microbial-derived secondary bile acids, and cardiovascular disease. Curr Atheroscler Rep. 2020;22(9):47. https://doi.org/10.1007/s11883-020-00863-7.

Article  CAS  Google Scholar 

Koh A, De Vadder F, Kovatcheva-Datchary P, Bäckhed F. From dietary fiber to host physiology: short-chain fatty acids as key bacterial metabolites. Cell. 2016;165(6):1332–45. https://doi.org/10.1016/j.cell.2016.05.041.

Article  CAS  Google Scholar 

Calderón-Pérez L, Gosalbes MJ, Yuste S, Valls RM, Pedret A, Llauradó E, et al. Gut metagenomic and short chain fatty acids signature in hypertension: a cross-sectional study. Sci Rep. 2020;10(1):6436. https://doi.org/10.1038/s41598-020-63475-w.

Article  CAS  Google Scholar 

Verhaar BJH, Collard D, Prodan A, Levels JHM, Zwinderman AH, Bäckhed F, et al. Associations between gut microbiota, faecal short-chain fatty acids, and blood pressure across ethnic groups: the HELIUS study. Eur Heart J. 2020;41(44):4259–67. https://doi.org/10.1093/eurheartj/ehaa704.

Article  CAS  Google Scholar 

Tang TWH, Chen HC, Chen CY, Yen CYT, Lin CJ, Prajnamitra RP, et al. Loss of gut microbiota alters immune system composition and cripples postinfarction cardiac repair. Circulation. 2019;139(5):647–59. https://doi.org/10.1161/circulationaha.118.035235.

Article  CAS  Google Scholar 

Aguilar EC, Leonel AJ, Teixeira LG, Silva AR, Silva JF, Pelaez JM, et al. Butyrate impairs atherogenesis by reducing plaque inflammation and vulnerability and decreasing NFκB activation. Nutr Metab Cardiovasc Dis. 2014;24(6):606–13. https://doi.org/10.1016/j.numecd.2014.01.002.

Article  CAS  Google Scholar 

Bar N, Korem T, Weissbrod O, Zeevi D, Rothschild D, Leviatan S, et al. A reference map of potential determinants for the human serum metabolome. Nature. 2020;588(7836):135–40. https://doi.org/10.1038/s41586-020-2896-2.

Article  Google Scholar 

Dekkers KF, Sayols-Baixeras S, Baldanzi G, Nowak C, Hammar U, Nguyen D, et al. An online atlas of human plasma metabolite signatures of gut microbiome composition. medRxiv. 2021:2021.12.23.21268179. https://doi.org/10.1101/2021.12.23.21268179.

Nemet I, Saha PP, Gupta N, Zhu W, Romano KA, Skye SM, et al. A cardiovascular disease-linked gut microbial metabolite acts via adrenergic receptors. Cell. 2020;180(5):862-77.e22. https://doi.org/10.1016/j.cell.2020.02.016.

Article  CAS  Google Scholar 

Paeslack N, Mimmler M, Becker S, Gao Z, Khuu MP, Mann A, et al. Microbiota-derived tryptophan metabolites in vascular inflammation and cardiovascular disease. Amino Acids. 2022. https://doi.org/10.1007/s00726-022-03161-5.

Article  Google Scholar 

Pedersen ER, Tuseth N, Eussen SJ, Ueland PM, Strand E, Svingen GF, et al. Associations of plasma kynurenines with risk of acute myocardial infarction in patients with stable angina pectoris. Arterioscler Thromb Vasc Biol. 2015;35(2):455–62. https://doi.org/10.1161/atvbaha.114.304674.

Article  CAS  Google Scholar 

Ala M, Eftekhar SP. The footprint of kynurenine pathway in cardiovascular diseases. International Journal of Tryptophan Research. 2022;15:11786469221096644. https://doi.org/10.1177/11786469221096643.

Article  Google Scholar 

Qi Q, Li J, Yu B, Moon JY, Chai JC, Merino J, et al. Host and gut microbial tryptophan metabolism and type 2 diabetes: an integrative analysis of host genetics, diet, gut microbiome and circulating metabolites in cohort studies. Gut. 2022;71(6):1095–105. https://doi.org/10.1136/gutjnl-2021-324053.

Article  CAS  Google Scholar 

Cason CA, Dolan KT, Sharma G, Tao M, Kulkarni R, Helenowski IB, et al. Plasma microbiome-modulated indole- and phenyl-derived metabolites associate with advanced atherosclerosis and postoperative outcomes. J Vasc Surg. 2018;68(5):1552-62.e7. https://doi.org/10.1016/j.jvs.2017.09.029.

Article  Google Scholar 

Xue H, Chen X, Yu C, Deng Y, Zhang Y, Chen S, et al. Gut microbially produced indole-3-propionic acid inhibi

留言 (0)

沒有登入
gif