Hydrothermally synthesized NiFe2O4/rGO composites: structure, morphology and electrical conductivity

Alam SN, Sharma N, Kumar L (2017) Synthesis of graphene oxide (GO) by modified Hummers method and its thermal reduction to obtain reduced graphene oxide (rGO). Graphene 6(1):1–18. https://doi.org/10.4236/graphene.2017.61001

Article  CAS  Google Scholar 

Al-Rubaye S, Rajagopalan R, Dou SX, Cheng Z (2017) Facile synthesis of a reduced graphene oxide wrapped porous NiCo2O4 composite with superior performance as an electrode material for supercapacitors. J. Mater. Chem. A 5(36):18989–18997. https://doi.org/10.1039/C7TA03251J

Article  CAS  Google Scholar 

Boychuk VM, Kotsyubunsky VO, Bandura KV, Rachii BI, Yaremiy IP, Fedorchenko SV (2019) Structural and electrical properties of nickel-iron spinel/reduced graphene oxide nanocomposites. Mol Cryst Liq Cryst 673:137–148. https://doi.org/10.1080/15421406.2019.1578503

Article  CAS  Google Scholar 

Britto JF, Samson V, Bernadsha SB, Madhavan J, Raj M (2022) Synthesis of rNiCo nanocomposite-as an electrode material for supercapacitor applications. J Inorg Organomet Polym Mater. https://doi.org/10.1007/s10904-022-02455-1

Article  Google Scholar 

Cai YZ, Cao WQ, Zhang YL, He P, Shu JC, Cao MS (2019) Tailoring rGO-NiFe2O4 hybrids to tune transport of electrons and ions for supercapacitor electrodes. J Alloys Compd 811:152011. https://doi.org/10.1016/j.jallcom.2019.152011

Article  CAS  Google Scholar 

Chakraborty K, Chakrabarty S, Pal T, Ghosh S (2017) Synergistic effect of zinc selenide–reduced graphene oxide towards enhanced solar light-responsive photocurrent generation and photocatalytic 4-nitrophenol degradation. New J Chem 41(11):4662–4671. https://doi.org/10.1039/C6NJ04022E

Article  CAS  Google Scholar 

Chang CJ, Wei YH, Huang KP (2017) Photocatalytic hydrogen production by flower-like graphene supported ZnS composite photocatalysts. Int J Hydrogen Energy 42(37):23578–23586. https://doi.org/10.1016/j.ijhydene.2017.04.219

Article  CAS  Google Scholar 

Deviannapoorani C, Dhivya L, Ramakumar S, Murugan R (2013) Lithium ion transport properties of high conductive tellurium substituted Li7La3Zr2O12 cubic lithium garnets. J Power Sources 240:18–25. https://doi.org/10.1016/j.jpowsour.2013.03.166

Article  CAS  Google Scholar 

Huang B, Bartholomew CH, Woodfield BF (2014) Improved calculations of pore size distribution for relatively large, irregular slit-shaped mesopore structure. Microporous Mesoporous Mater 184:112–121. https://doi.org/10.1016/j.micromeso.2013.10.008

Article  CAS  Google Scholar 

Kate RS, Khalate SA, Deokate RJ (2018) Overview of nanostructured metal oxides and pure nickel oxide (NiO) electrodes for supercapacitors: a review. J Alloys Compd 734:89–111. https://doi.org/10.1016/j.jallcom.2017.10.262

Article  CAS  Google Scholar 

Kotsyubynsky V, Ostafiychuk B, Moklyak V, Hrubiak A (2015) Synthesis, characterization and electrochemical properties of mesoporous maghemite γ-Fe2O3. Solid State Phenom 230:120–126. https://doi.org/10.4028/www.scientific.net/SSP.230.120

Article  Google Scholar 

Kotsyubynsky VO, Boychuk VM, Budzuliak IM, Rachiy BI, Zapukhlyak RI, Hodlevska MA, Malakhov AA (2021) Structural, morphological and electrical properties of graphene oxides obtained by Hummers, Tour and modified methods: a comparative study. Phys Chem Solid State 22(1):31–38. https://doi.org/10.15330/pcss.22.1.31-38

Article  CAS  Google Scholar 

Kumar N, Kumar A, Huang GM, Wu WW, Tseng TY (2018) Facile synthesis of mesoporous NiFe2O4/CNTs nanocomposite cathode material for high performance asymmetric pseudocapacitors. Appl Surf Sci 433:1100–1112. https://doi.org/10.1016/j.apsusc.2017.10.095

Article  CAS  Google Scholar 

Maity KP, Patra A, Prasad V (2020) Influence of the chemical functionalization of carbon nanotubes on low temperature ac conductivity with polyaniline composites. J Phys d: Appl Phys 53(12):125303. https://doi.org/10.1088/1361-6463/ab5f18

Article  CAS  Google Scholar 

Majid F, Rauf J, Ata S, Bibi I, Malik A, Ibrahim SM, Iqbal M (2021) Synthesis and characterization of NiFe2O4 ferrite: sol–gel and hydrothermal synthesis routes effect on magnetic, structural and dielectric characteristics. Mater Chem Phys 258:123888. https://doi.org/10.1016/j.matchemphys.2020.123888

Article  CAS  Google Scholar 

Mary BCJ, Vijaya JJ, Saravanakumar B, Bououdina M, Kennedy LJ (2022) NiFe2O4 and 2D-rGO decorated with NiFe2O4 nanoparticles as highly efficient electrodes for supercapacitors. Synth Met 291:117201. https://doi.org/10.1016/j.synthmet.2022.117201

Article  CAS  Google Scholar 

Niu Y, Fang Q, Zhang X, Zhang P, Li Y (2016) Reduction and structural evolution of graphene oxide sheets under hydrothermal treatment. Phys Lett A 380(38):3128–3132. https://doi.org/10.1016/j.physleta.2016.07.027

Article  CAS  Google Scholar 

Ostafiychuk BK, Kaykan LS, Mazurenko JS, Deputat BY, Koren SV (2017) Effect of substitution on the mechanism of conductivity of ultra dispersed lithium-iron spinel, substituted with magnesium ions. J Nano-and Electron Phys. https://doi.org/10.21272/jnep.9(5).05018

Article  Google Scholar 

Salazar-Tamayo H, García KE, Barrero CA (2019) New method to calculate Mössbauer recoilless f-factors in NiFe2O4. Magnetic, morphological and structural properties. J Magn Magn Mater 471:242–249. https://doi.org/10.1016/j.jmmm.2018.09.066

Article  CAS  Google Scholar 

Samson VAF, Bernadsha SB, Britto JF, Raj MVA, Madhavan J (2022a) Synthesis of rGO/NiFe2O4 nanocomposite as an alternative counter electrode material to fabricate Pt-free efficient dye sensitized solar cells. Diamond Relat. Mater. 130:109406. https://doi.org/10.1016/j.diamond.2022.109406

Article  CAS  Google Scholar 

Samson V, Bernadsha SB, PaulWinston AJP, Divya D, Abraham J, Raj M, Madhavan J (2022b) rGO Sheets/ZnFe2O4 nanocomposites as an efficient electro catalyst material for I3−/I− reaction for high performance DSSCs. J Inorg Organomet Polym Mater 32(3):1183–1189. https://doi.org/10.1007/s10904-021-02182-z

Article  CAS  Google Scholar 

Sethi M, Shenoy US, Muthu S, Bhat DK (2020) Facile solvothermal synthesis of NiFe2O4 nanoparticles for high-performance supercapacitor applications. Front Mater Sci 14(2):120–132. https://doi.org/10.1007/s11706-020-0499-3

Article  Google Scholar 

Simon P, Gogotsi Y (2020) Perspectives for electrochemical capacitors and related devices. Nat Mater 19(11):1151–1163. https://doi.org/10.1038/s41563-020-0747-z

Article  CAS  Google Scholar 

Tamilselvi R, Lekshmi GS, Padmanathan N, Selvaraj V, Bazaka O, Levchenko I, Mandhakini M (2022) NiFe2O4/rGO nanocomposites produced by soft bubble assembly for energy storage and environmental remediation. Renew Energ 181:1386–1401. https://doi.org/10.1016/j.renene.2021.07.088

Article  CAS  Google Scholar 

Wang J, Guo X (2020) Adsorption isotherm models: classification, physical meaning, application and solving method. Chemosphere. https://doi.org/10.1016/j.chemosphere.2020.127279

Article  Google Scholar 

留言 (0)

沒有登入
gif