Changes of energy metabolism in failing heart and its regulation by SIRT3

Benjamin Emelia J, Blaha Michael J, Chiuve Stephanie E et al (2017) Heart Disease and Stroke Statistics–2017 Update: a report from the American Heart Association. Circulation 135:e146–e603

CAS  Google Scholar 

Marco M (2017) Teerlink John R, Heart failure. Lancet 390:1981–1995

Google Scholar 

Ng AC, Delgado V, Borlaug BA, Bax JJ (2021) Diabesity: the combined burden of obesity and diabetes on heart disease and the role of imaging. Nat Rev Cardiol 18:291–304

Selvaraj S, Kelly DP, Margulies KB (2020) Implications of altered ketone metabolism and therapeutic ketosis in heart failure. Circulation 141:1800–1812

Mayr JA, Haack TB, Graf E et al (2012) Lack of the mitochondrial protein acylglycerol kinase causes Sengers syndrome. Am J Hum Genet 90:314–20

Ketema EB, Lopaschuk GD (2021) Post-translational acetylation control of cardiac energy metabolism. Front Cardiovasc Med 8:723996

CAS  Google Scholar 

Lundby A, Lage K, Weinert BT et al (2012) Proteomic analysis of lysine acetylation sites in rat tissues reveals organ specificity and subcellular patterns. Cell Rep 2:419–31

Kim SC, Sprung R, Chen Y et al (2006) Substrate and functional diversity of lysine acetylation revealed by a proteomics survey. Mol Cell 23:607–18

Wioleta G, Ewa S, Anna B-Z (2017) Sirtuins, a promising target in slowing down the ageing process. Biogerontology 18:447–476

Google Scholar 

Toren F, Chu-Xia D, Raul M (2009) Recent progress in the biology and physiology of sirtuins. Nature 460:587–591

Google Scholar 

Winnik S, Auwerx J, Sinclair DA et al (2015) Protective effects of sirtuins in cardiovascular diseases: from bench to bedside. Eur Heart J 36:3404–12

Yan W, Jingqi Y, Tingting H et al (2019) SIRT2: controversy and multiple roles in disease and physiology. Ageing Res Rev 55:100961

Google Scholar 

Bindu S, Pillai VB, Gupta MP (2016) Role of sirtuins in regulating pathophysiology of the heart. Trends Endocrinol Metab 27:563–573

Favero G, Franceschetti L, Rodella LF et al (2015) Sirtuins, aging, and cardiovascular risks. Age (Dordr) 37:9804

Kauppila TES, Kauppila JHK, Larsson NG (2017) Mammalian mitochondria and aging: an update. Cell Metab 25:57–71

Covarrubias AJ, Perrone R, Grozio A et al (2021) NAD metabolism and its roles in cellular processes during ageing. Nat Rev Mol Cell Biol 22:119–141

Dina B, Giuseppina R, Paola C et al (2005) A novel VNTR enhancer within the SIRT3 gene, a human homologue of SIR2, is associated with survival at oldest ages. Genomics 85:258–263

Google Scholar 

Pillai VB, Sundaresan NR, Jeevanandam V et al (2010) Mitochondrial SIRT3 and heart disease. Cardiovasc Res 88:250–6

Yanlu X, Mingxing W, Jinbo Z et al (2016) Sirtuin 3: a Janus face in cancer (Review). Int J Oncol 49:2227–2235

Google Scholar 

Landim-Vieira M, Childers MC, Wacker AL et al (2022) Post-translational modification patterns on β-myosin heavy chain are altered in ischemic and nonischemic human hearts. Elife 11:undefined

Loescher CM, Hobbach AJ, Linke WA (2021) Titin (TTN): from molecule to modifications, mechanics and medical significance. Cardiovasc Res 

Lin YH, Warren CM, Li J et al (2016) Myofibril growth during cardiac hypertrophy is regulated through dual phosphorylation and acetylation of the actin capping protein CapZ. Cell Signal 28:1015–24

Lin YH, Schmidt W, Fritz KS et al (2020) Site-specific acetyl-mimetic modification of cardiac troponin I modulates myofilament relaxation and calcium sensitivity. J Mol Cell Cardiol 139:135–147

Peng C, Luo XS et al (2017) Phenylephrine-induced cardiac hypertrophy is attenuated by a histone acetylase inhibitor anacardic acid in mice. Mol Biosyst 13:714–724

Mao Q, Wu S, Peng C et al (2021) Interactions between the ERK1/2 signaling pathway and PCAF play a key role in PE‑induced cardiomyocyte hypertrophy. Mol Med Rep 24

Peiye S, Xiaojun F, Xiaoying Z et al (2016) SIRT6 suppresses phenylephrine-induced cardiomyocyte hypertrophy though inhibiting p300. J Pharmacol Sci 132:31–40

Google Scholar 

Peugnet V, Chwastyniak M, Mulder P et al (2022) Mitochondrial-targeted therapies require mitophagy to prevent oxidative stress induced by SOD2 inactivation in hypertrophied cardiomyocytes. Antioxidants (Basel) 11

Qingquan C, Zeng Yu, Xiulin Y et al (2022) Resveratrol ameliorates myocardial fibrosis by regulating Sirt1/Smad3 deacetylation pathway in rat model with dilated cardiomyopathy. BMC Cardiovasc Disord 22:17

Google Scholar 

Keke Wu, Biao Li, Qiuzhen L et al (2021) Nicotinamide mononucleotide attenuates isoproterenol-induced cardiac fibrosis by regulating oxidative stress and Smad3 acetylation. Life Sci 274:119299

Google Scholar 

Xiaokan Z, Ruiping Ji, Xianghai L et al (2018) MicroRNA-195 regulates metabolism in failing myocardium via alterations in sirtuin 3 expression and mitochondrial protein acetylation. Circulation 137:2052–2067

Google Scholar 

Yang Lu, Xiaoxiang C, Zirong Bi et al (2021) Curcumin attenuates renal ischemia reperfusion injury via JNK pathway with the involvement of p300/CBP-mediated histone acetylation. Korean J Physiol Pharmacol 25:413–423

CAS  Google Scholar 

Yoichi S, Ayumi K, Masafumi F et al (2022) The polyunsaturated fatty acids, EPA and DHA, ameliorate myocardial infarction-induced heart failure by inhibiting p300-HAT activity in rats. J Nutr Biochem 106:109031

Google Scholar 

Yao-Ping Li, Fu-Guo T, Peng-Cheng S et al (2014) 4-Hydroxynonenal promotes growth and angiogenesis of breast cancer cells through HIF-1α stabilization. Asian Pac J Cancer Prev 15:10151–10156

Google Scholar 

Tianshi W, Ying C, Quan Z et al (2019) SENP1-Sirt3 signaling controls mitochondrial protein acetylation and metabolism. Mol Cell 75:823-834.e5

Google Scholar 

Horton JL, Martin OJ, Lai L et al (2016) Mitochondrial protein hyperacetylation in the failing heart. JCI Insight 2

Xiaoqiang T, Xiao-Feng C, Hou-Zao C et al (2017) Mitochondrial sirtuins in cardiometabolic diseases. Clin Sci (Lond) 131:2063–2078

Google Scholar 

Lopaschuk Gary D, Ussher John R, Folmes Clifford DL et al (2010) Myocardial fatty acid metabolism in health and disease. Physiol Rev 90:207–258

CAS  Google Scholar 

Karwi Qutuba G, Uddin Golam M, Ho Kim L et al (2018) Loss of metabolic flexibility in the failing heart. Front Cardiovasc Med 5:68

CAS  Google Scholar 

Kumar Anupam A, Kelly Daniel P, Chirinos JA (2019) Mitochondrial dysfunction in heart failure with preserved ejection fraction. Circulation 139:1435–1450

CAS  Google Scholar 

Neubauer S (2007) The failing heart—an engine out of fuel. N Engl J Med 356:1140–1151

Google Scholar 

van der Vusse GJ, Glatz JF, Stam HC et al (1992) Fatty acid homeostasis in the normoxic and ischemic heart. Physiol Rev 72:881–940

Google Scholar 

Stefan N (2007) The failing heart—an engine out of fuel. N Engl J Med 356:1140–1151

Google Scholar 

Edoardo B, Christoph M (2018) Metabolic remodelling in heart failure. Nat Rev Cardiol 15:457–470

Google Scholar 

Randle PJ, Garland PB, Hales CN et al (1963) The glucose fatty-acid cycle. Its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus. Lancet 1:785–9

Wei S, Caixia L, Qiuhui C et al (2018) SIRT3: a new regulator of cardiovascular diseases. Oxid Med Cell Longev 2018:7293861

Google Scholar 

Cluntun AA, Badolia R, Lettlova S et al (2021) The pyruvate-lactate axis modulates cardiac hypertrophy and heart failure. Cell Metab 33:629–648.e10

Saddik M, Lopaschuk GD (1991) Myocardial triglyceride turnover and contribution to energy substrate utilization in isolated working rat hearts. J Biol Chem 266:8162–8170

CAS  Google Scholar 

Wisneski JA, Stanley WC, Neese RA et al (1990) Effects of acute hyperglycemia on myocardial glycolytic activity in humans. J Clin Invest 85:1648–1656

CAS  Google Scholar 

Rong T, Colucci WS, Unlocking AZ et al (2018) The secrets of mitochondria in the cardiovascular system: path to a cure in heart failure—a report from the, National Heart, Lung, and Blood Institute Workshop. Circulation 2019(140):1205–1216

Google Scholar 

Finck Brian N, Kelly DP (2006) PGC-1 coactivators: inducible regulators of energy metabolism in health and disease. J Clin Invest 116:615–622

CAS  Google Scholar 

Peterson LR, Herrero P, Schechtman KB et al (2004) Effect of obesity and insulin resistance on myocardial substrate metabolism and efficiency in young women. Circulation 109:2191–6

Gopal K, Al BR, Altamimi TR et al (2021) FoxO1 inhibition alleviates type 2 diabetes-related diastolic dysfunction by increasing myocardial pyruvate dehydrogenase activity. Cell Rep 35:108935

Ying H, Weiju S, Di R et al (2020) SIRT1 agonism modulates cardiac NLRP3 inflammasome through pyruvate dehydrogenase during ischemia and reperfusion. Redox Biol 34:101538

Google Scholar 

Lewis AJ, Neubauer S, Tyler DJ et al (2016) Pyruvate dehydrogenase as a therapeutic target for obesity cardiomyopathy. Expert Opin Ther Targets 20:755–66

Sheeran FL, Angerosa J, Liaw NY et al (2019) Adaptations in protein expression and regulated activity of pyruvate dehydrogenase multienzyme complex in human systolic heart failure. Oxid Med Cell Longev 2019:4532592

Jun F, Changliang S, Hee-Bum K et al (2014) Tyr phosphorylation of PDP1 toggles recruitment between ACAT1 and SIRT3 to regulate the pyruvate dehydrogenase complex. Mol Cell 53:534–548

Google Scholar 

Ozden O, Park SH, Wagner BA et al (2014) SIRT3 deacetylates and increases pyruvate dehydrogenase activity in cancer cells. Free Radic Biol Med 76:163–172

Mori J, Alrob OA, Wagg CS et al (2013) ANG II causes insulin resistance and induces cardiac metabolic switch and inefficiency: a critical role of PDK4. Am J Physiol Heart Circ Physiol 304:H1103–13

Christoph K, Katharina P, Tilman S et al (2015) SIRT3 deficiency impairs mitochondrial and contractile function in the heart. Basic Res Cardiol 110:36

Google Scholar 

Shu S, Yue D, Guo-Liang D et al (2021) Sirtuin 3 deficiency exacerbates diabetic cardiomyopathy via necroptosis enhancement and NLRP3 activation. Acta Pharmacol Sin 42:230–241

Google Scholar 

Lei L, Qingguo Li, Liyong H et al (2015) Sirt3 binds to and deacetylates mitochondrial pyruvate carrier 1 to enhance its activity. Biochem Biophys Res Commun 468:807–812

Google Scholar 

Junmin W, Xiang H, Lu Yifei et al (2021) The role and therapeutic implication of CPTs in fatty acid oxidation and cancers progression. Am J Cancer Res 11:2477–2494

Google Scholar 

Murthy MS, Pande SV (1987) Malonyl-CoA binding site and the overt carnitine palmitoyltransferase activity reside on the opposite sides of the outer mitochondrial membrane. Proc Natl Acad Sci U S A 84:378–382

CAS  Google Scholar 

Paulson DJ, Ward KM, Shug AL (1984) Malonyl CoA inhibition of carnitine palmityltransferase in rat heart mitochondria. FEBS Lett 176:381–384

CAS  Google Scholar 

Saddik M, Gamble J, Witters LA et al (1993) Acetyl-CoA carboxylase regulation of fatty acid oxidation in the heart. J Biol Chem 268:25836–25845

CAS  Google Scholar 

Dyck Jason RB, Lopaschuk GD (2002) Malonyl CoA control of fatty acid oxidation in the ischemic heart. J Mol Cell Cardiol 34:1099–1109

CAS  Google Scholar 

Wende AR, Abel ED (2010) Lipotoxicity in the heart. Biochim Biophys Acta 1801:311–9

Goldberg IJ, Trent CM, Schulze PC (2012) Lipid metabolism and toxicity in the heart. Cell Metab 15:805–12

Xiaojuan Z, Kuan C, Guizhi Y et al (2020) SIRT3 is a downstream target of PPAR-α implicated in high glucose-induced cardiomyocyte injury in AC16 cells. Exp Ther Med 20:1261–1268

Google Scholar 

Finck Brian N, Lehman John J, Leone Teresa C et al (2002) The cardiac phenotype induced by PPARalpha overexpression mimics that caused by diabetes mellitus. J Clin Invest 109:121–130

CAS  Google Scholar 

Eleftheria B, Veronika L, Eleftheria G et al (2013) Delayed cardioprotective effects of WY-14643 are associated with inhibition of MMP-2 and modulation of Bcl-2 family proteins through PPAR-α activation in rat hearts subjected to global ischaemia-reperfusion. Can J Physiol Pharmacol 91:608–616

Google Scholar 

Yue TL, Bao W, Jucker BM et al (2003) Activation of peroxisome proliferator-activated receptor-alpha protects the heart from ischemia/reperfusion injury. Circulation 108:2393–9

Yin C, Hao L, Erfei S et al (2021) Deficiency of telomere-associated repressor activator protein 1 precipitates cardiac aging in mice p53/PPARα signaling. Theranostics 11:4710–4727

Google Scholar 

Wolfgang L, Paulus W, Manuel B et al (2009) The peroxisome proliferator-activated receptor-alpha (PPAR-alpha) agonist, AVE8134, attenuates the progression of heart failure and increases survival in rats. Acta Pharmacol Sin 30:935–946

Google Scholar 

Benjamin L, Clémence M, Fanny V et al (2011) Post-translational modifications, a key process in CD36 function: lessons from the spontaneously hypertensive rat heart. J Mol Cell Cardiol 51:99–108

Google Scholar 

Tongshuai C, Junni L, Na Li et al (2015) Mouse SIRT3 attenuates hypertrophy-related lipid accumulation in the heart through the deacetylation of LCAD. PLoS ONE 10:e0118909

Google Scholar 

Grillon JM, Johnson KR, Kotlo K et al (2012) Non-histone lysine acetylated proteins in heart failure. Biochim Biophys Acta 1822:607–14

Liu GZ, Xu W, Zang YX et al (2022) Honokiol inhibits atrial metabolic remodeling in atrial fibrillation through Sirt3 pathway. Front Pharmacol 13:813272

Alrob OA, Sankaralingam S, Ma C et al (2014) Obesity-induced lysine acetylation increases cardiac fatty acid oxidation and impairs insulin signalling. Cardiovasc Res 103:485–97

Allard MF, Schönekess BO, Henning SL et al (1994) Contribution of oxidative metabolism and glycolysis to ATP production in hypertrophied hearts. Am J Physiol 267:H742–H750

CAS  Google Scholar 

Pillai VB, Sundaresan NR, Kim G et al (2010) Exogenous NAD blocks cardiac hypertrophic response via activation of the SIRT3-LKB1-AMP-activated kinase pathway. J Biol Chem 285:3133–44

Hopkins TA, Dyck JRB, Lopaschuk GD (2003) AMP-activated protein kinase regulation of fatty acid oxidation in the ischaemic heart. Biochem Soc Trans 31:207–212

CAS  Google Scholar 

Zaha VG, Qi D, Su KN et al (2016) AMPK is critical for mitochondrial function during reperfusion after myocardial ischemia. J Mol Cell Cardiol 91:104–13

Yenan F, Youyi Z, Han X (2018) AMPK and cardiac remodelling. Sci China Life Sci 61:14–23

Google Scholar 

Heng C, Zhuo Chengui Zu, Aohan et al (2022) Thymoquinone ameliorates pressure overload-induced cardiac hypertrophy by activating the AMPK signalling pathway. J Cell Mol Med 26:855–867

Google Scholar 

Engin Ayse Basak (2017) What is lipotoxicity? Adv Exp Med Biol 960:197–220

CAS  Google Scholar 

Li X, Liu J, Lu Q et al (2019) AMPK: a therapeutic target of heart failure-not only metabolism regulation. Biosci Rep 39

Xue T, Chen Xu, Qianqian J et al (2022) Notoginsenoside R1 ameliorates cardiac lipotoxicity through AMPK signaling pathway. Front Pharmacol 13:864326

Google Scholar 

Hong-Liang K, Ai-Jie H, Ning-Ning L et al (2018) The effects of ginsenoside Rb1 on fatty acid β-oxidation, mediated by AMPK, in the failing heart. Iran J Basic Med Sci 21:731–737

留言 (0)

沒有登入
gif