Comprehensive longitudinal non-invasive quantification of healthspan and frailty in a large cohort (n = 546) of geriatric C57BL/6 J mice

Dent E, et al. Management of frailty: opportunities, challenges, and future directions. Lancet. 2019;394(10206):1376–86. https://doi.org/10.1016/S0140-6736(19)31785-4.

Article  Google Scholar 

Clegg A, et al. Frailty in elderly people. Lancet. 2013;381(9868):752–62. https://doi.org/10.1016/S0140-6736(12)62167-9.

Article  Google Scholar 

Fried LP, et al. Frailty in older adults: evidence for a phenotype. J Gerontol A Biol Sci Med Sci. 2001;56(3):M146–56. https://doi.org/10.1093/gerona/56.3.m146.

Article  CAS  Google Scholar 

Rockwood K, et al. A global clinical measure of fitness and frailty in elderly people. CMAJ. 2005;173(5):489–95. https://doi.org/10.1503/cmaj.050051.

Article  Google Scholar 

Howlett SE, Rutenberg AD, Rockwood K. The degree of frailty as a translational measure of health in aging. Nature Aging. 2021;1(8):651–65. https://doi.org/10.1038/s43587-021-00099-3.

Article  Google Scholar 

Liu H, et al. Clinically relevant frailty index for mice. J Gerontol A Biol Sci Med Sci. 2014;69(12):1485–91. https://doi.org/10.1093/gerona/glt188.

Article  Google Scholar 

Gomez-Cabrera MC, et al. A new frailty score for experimental animals based on the clinical phenotype: inactivity as a model of frailty. J Gerontol A Biol Sci Med Sci. 2017;72(7):885–91. https://doi.org/10.1093/gerona/glw337.

Article  Google Scholar 

Baumann CW, Kwak D, Thompson LV. Assessing onset, prevalence and survival in mice using a frailty phenotype. Aging. 2018;10(12):4042–53. https://doi.org/10.18632/aging.101692.

Article  Google Scholar 

Parks RJ, et al. A procedure for creating a frailty index based on deficit accumulation in aging mice. J Gerontol A Biol Sci Med Sci. 2012;67(3):217–27. https://doi.org/10.1093/gerona/glr193.

Article  Google Scholar 

Whitehead JC, et al. A clinical frailty index in aging mice: comparisons with frailty index data in humans. J Gerontol A Biol Sci Med Sci. 2014;69(6):621–32. https://doi.org/10.1093/gerona/glt136.

Article  Google Scholar 

Malmstrom TK, Miller DK, Morley JE. A comparison of four frailty models. J Am Geriatr Soc. 2014;62(4):721–6. https://doi.org/10.1111/jgs.12735.

Article  Google Scholar 

Hogan DB, et al. Comparing frailty measures in their ability to predict adverse outcome among older residents of assisted living. BMC Geriatr. 2012;12:56. https://doi.org/10.1186/1471-2318-12-56.

Article  Google Scholar 

Todorovic S, et al. Frailty index and phenotype frailty score: sex- and age-related differences in 5XFAD transgenic mouse model of Alzheimer’s disease. Mech Ageing Dev. 2020;185:111195. https://doi.org/10.1016/j.mad.2019.111195.

Article  CAS  Google Scholar 

Rockwood K, Andrew M, Mitnitski A. A comparison of two approaches to measuring frailty in elderly people. J Gerontol A Biol Sci Med Sci. 2007;62(7):738–43. https://doi.org/10.1093/gerona/62.7.738.

Article  Google Scholar 

Kane AE, et al. A comparison of two mouse frailty assessment tools. J Gerontol A Biol Sci Med Sci. 2017;72(7):904–9. https://doi.org/10.1093/gerona/glx009.

Article  Google Scholar 

Malavolta M, et al. LAV-BPIFB4 associates with reduced frailty in humans and its transfer prevents frailty progression in old mice. Aging. 2019;11(16):6555–68. https://doi.org/10.18632/aging.102209.

Article  CAS  Google Scholar 

Kane AE, et al. Implementation of the mouse frailty index. Can J Physiol Pharmacol. 2017;95(10):1149–55. https://doi.org/10.1139/cjpp-2017-0025.

Article  CAS  Google Scholar 

Feridooni HA, et al. Reliability of a frailty index based on the clinical assessment of health deficits in male C57BL/6J mice. J Gerontol A Biol Sci Med Sci. 2015;70(6):686–93. https://doi.org/10.1093/gerona/glu161.

Article  Google Scholar 

Castro B, Kuang S. Evaluation of muscle performance in mice by treadmill exhaustion test and whole-limb grip strength assay. Bio Protoc. 2017;7(8):e2237. https://doi.org/10.21769/BioProtoc.2237.

Deacon RM. Measuring the strength of mice. J Vis Exp. 2013;(76):2610.  https://doi.org/10.3791/2610.

Malavolta M, et al. Recovery from mild Escherichia coli O157:H7 infection in young and aged C57BL/6 mice with intact flora estimated by fecal shedding, locomotor activity and grip strength. Comp Immunol Microbiol Infect Dis. 2019;63:1–9. https://doi.org/10.1016/j.cimid.2018.12.003.

Article  Google Scholar 

Grohn KJ, et al. C60 in olive oil causes light-dependent toxicity and does not extend lifespan in mice. Geroscience. 2021;43(2):579–91. https://doi.org/10.1007/s11357-020-00292-z.

Article  CAS  Google Scholar 

Morio Y, Izawa KP, Omori Y, Katata H, Ishiyama D, Koyama S, et al. The relationship between walking speed and step length in older aged patients. Diseases. 2019;7(1):17. https://doi.org/10.3390/diseases7010017.

Fernagut PO, et al. A simple method to measure stride length as an index of nigrostriatal dysfunction in mice. J Neurosci Methods. 2002;113(2):123–30. https://doi.org/10.1016/s0165-0270(01)00485-x.

Article  Google Scholar 

Han Y, Eipel M, Franzen J, Sakk V, Dethmers-Ausema B, Yndriago L, et al. Epigenetic age-predictor for mice based on three CpG sites. Elife. 2018;7:e37462. https://doi.org/10.7554/eLife.37462.

Kreidler SM, Muller KE, Grunwald GK, Ringham BM, Coker-Dukowitz ZT, Sakhadeo UR, et al. GLIMMPSE: online power computation for linear models with and without a baseline covariate. J Stat Softw. 2013;54(10):i10. https://doi.org/10.18637/jss.v054.i10.

Romero-Ortuno R. An alternative method for frailty index cut-off points to define frailty categories. Eur Geriatr Med. 2013;4(5):299–303. https://doi.org/10.1016/j.eurger.2013.06.005.

Kwak D, Baumann CW, Thompson LV. Identifying characteristics of frailty in female mice using a phenotype assessment tool. J Gerontol A Biol Sci Med Sci. 2020;75(4):640–6. https://doi.org/10.1093/gerona/glz092.

Article  CAS  Google Scholar 

von Zglinicki T, et al. Frailty in mouse ageing: a conceptual approach. Mech Ageing Dev. 2016;160:34–40. https://doi.org/10.1016/j.mad.2016.07.004.

Article  Google Scholar 

Kane AE, et al. Impact of longevity interventions on a validated mouse clinical frailty index. J Gerontol A Biol Sci Med Sci. 2016;71(3):333–9. https://doi.org/10.1093/gerona/glu315.

Article  CAS  Google Scholar 

Kane AE, et al. Sex differences in healthspan predict lifespan in the 3xTg-AD mouse model of Alzheimer’s disease. Front Aging Neurosci. 2018;10:172. https://doi.org/10.3389/fnagi.2018.00172.

Article  CAS  Google Scholar 

Kane AE, et al. Acetaminophen hepatotoxicity in mice: effect of age, frailty and exposure type. Exp Gerontol. 2016;73:95–106. https://doi.org/10.1016/j.exger.2015.11.013.

Article  CAS  Google Scholar 

Jansen HJ, et al. Atrial structure, function and arrhythmogenesis in aged and frail mice. Sci Rep. 2017;7:44336. https://doi.org/10.1038/srep44336.

Article  CAS  Google Scholar 

Antoch MP, et al. Physiological frailty index (PFI): quantitative in-life estimate of individual biological age in mice. Aging. 2017;9(3):615–26. https://doi.org/10.18632/aging.101206.

Article  CAS  Google Scholar 

Keller K, et al. Chronic treatment with the ACE inhibitor enalapril attenuates the development of frailty and differentially modifies pro- and anti-inflammatory cytokines in aging male and female C57BL/6 mice. J Gerontol A Biol Sci Med Sci. 2019;74(8):1149–57. https://doi.org/10.1093/gerona/gly219.

Article  CAS  Google Scholar 

Huizer-Pajkos A, et al. Adverse geriatric outcomes secondary to polypharmacy in a mouse model: the influence of aging. J Gerontol A Biol Sci Med Sci. 2016;71(5):571–7. https://doi.org/10.1093/gerona/glv046.

Article  CAS  Google Scholar 

Tang Y, et al. Pre-existing weakness is critical for the occurrence of postoperative cognitive dysfunction in mice of the same age. PLoS One. 2017;12(8):e0182471. https://doi.org/10.1371/journal.pone.0182471.

Article  CAS  Google Scholar 

Mach J, et al. Preclinical frailty assessments: phenotype and frailty index identify frailty in different mice and are variably affected by chronic medications. Exp Gerontol. 2022;161:111700. https://doi.org/10.1016/j.exger.2022.111700.

Article  CAS  Google Scholar 

Seldeen KL, et al. High intensity interval training improves physical performance and frailty in aged mice. J Gerontol A Biol Sci Med Sci. 2018;73(4):429–37. https://doi.org/10.1093/gerona/glx120.

Article  CAS  Google Scholar 

Xu M, et al. Senolytics improve physical function and increase lifespan in old age. Nat Med. 2018;24(8):1246–56. https://doi.org/10.1038/s41591-018-0092-9.

Article  CAS  Google Scholar 

Baumann CW, Kwak D, Thompson LV. Sex-specific components of frailty in C57BL/6 mice. Aging. 2019;11(14):5206–14. https://doi.org/10.18632/aging.102114.

Article  Google Scholar 

Romero-Ortuno R, et al. Is phenotypical prefrailty all the same? A longitudinal investigation of two prefrailty subtypes in TILDA. Age Ageing. 2019;49(1):39–45. https://doi.org/10.1093/ageing/afz129.

Article  Google Scholar 

Baumann CW, Kwak D, Thompson LV. Phenotypic frailty assessment in mice: development, discoveries, and experimental considerations. Physiology (Bethesda). 2020;35(6):405–14. https://doi.org/10.1152/physiol.00016.2020.

Article  Google Scholar 

Ackert-Bicknell CL, et al. Aging research using mouse models. Curr Protoc Mouse Biol. 2015;5(2):95–133. https://doi.org/10.1002/9780470942390.mo140195.

Article  Google Scholar 

Alfaras I, et al. Empirical versus theoretical power and type I error (false-positive) rates estimated from real murine aging research data. Cell Rep. 2021;36(7):109560. https://doi.org/10.1016/j.celrep.2021.109560.

Article  CAS  Google Scholar 

Demaria M, et al. An essential role for senescent cells in optimal wound healing through secretion of PDGF-AA. Dev Cell. 2014;31(6):722–33. https://doi.org/10.1016/j.devcel.2014.11.012.

Article  CAS  Google Scholar 

Dungan CM, Figueiredo VC, Wen Y, VonLehmden GL, Zdunek CJ, Thomas NT, et al. Senolytic treatment rescues blunted muscle hypertrophy in old mice. Geroscience. 2022;44(4):1925–40. https://doi.org/10.1007/s11357-022-00542-2.

Kim S, et al. The frailty index outperforms DNA methylation age and its derivatives as an indicator of biological age. Geroscience. 2017;39(1):83–92. https://doi.org/10.1007/s11357-017-9960-3.

Article  CAS  Google Scholar 

Seldeen KL, et al. High intensity interval training improves physical performance in aged female mice: a comparison of mouse frailty assessment tools. Mech Ageing Dev. 2019;180:49–62. https://doi.org/10.1016/j.mad.2019.04.001.

Article  Google Scholar 

留言 (0)

沒有登入
gif