The neuroimmune axis of Alzheimer’s disease

Bertram L, Tanzi RE. Alzheimer disease risk genes: 29 and counting. Nat Rev Neurol. 2019;15:191–2.

Article  Google Scholar 

Tanzi RE, Bertram L. Twenty years of the Alzheimer’s disease amyloid hypothesis: a genetic perspective. Cell. 2005;120:545–55.

Article  CAS  Google Scholar 

Griciuc A, Tanzi RE. The role of innate immune genes in Alzheimer’s disease. Curr Opin Neurol. 2021;34:228–36.

Article  CAS  Google Scholar 

Knopman DS, Amieva H, Petersen RC, Chételat G, Holtzman DM, Hyman BT, et al. Alzheimer disease. Nat Rev Dis Primers. 2021;7:33.

Article  Google Scholar 

Veitch DP, Weiner MW, Aisen PS, Beckett LA, Cairns NJ, Green RC, et al. Understanding disease progression and improving Alzheimer’s disease clinical trials: recent highlights from the Alzheimer’s Disease Neuroimaging Initiative. Alzheimer’s Dementia. 2018;15:106–52.

Article  Google Scholar 

Bertram L, Tanzi RE. Alzheimer disease risk genes: 29 and counting. Nat Rev Neurol. 2019;15:1.

Article  Google Scholar 

Chhatwal JP, Schultz SA, McDade E, Schultz AP, Liu L, Hanseeuw BJ, et al. Variant-dependent heterogeneity in amyloid β burden in autosomal dominant Alzheimer’s disease: cross-sectional and longitudinal analyses of an observational study. Lancet Neurol. 2022;21:140–52.

Article  CAS  Google Scholar 

Dujardin S, Commins C, Lathuiliere A, Beerepoot P, Fernandes AR, Kamath TV, et al. Tau molecular diversity contributes to clinical heterogeneity in Alzheimer’s disease. Nat Med. 2020;26:1256–63.

Article  CAS  Google Scholar 

Das SR, Lyu X, Duong MT, Xie L, McCollum L, Flores R, et al. Tau-atrophy variability reveals phenotypic heterogeneity in Alzheimer’s disease. Ann Neurol. 2021;90:751–62.

Article  CAS  Google Scholar 

Bertram L, Lange C, Mullin K, Parkinson M, Hsiao M, Hogan MF, et al. Genome-wide association analysis reveals putative Alzheimer’s disease susceptibility loci in addition to APOE. Am J Hum Genetics. 2008;83:623–32.

Article  CAS  Google Scholar 

Hollingworth P, Harold D, Sims R, Gerrish A, Lambert J-C, Carrasquillo MM, et al. Common variants at ABCA7, MS4A6A/MS4A4E, EPHA1, CD33 and CD2AP are associated with Alzheimer’s disease. Nat Genet. 2011;43:429–35.

Article  CAS  Google Scholar 

Naj AC, Jun G, Beecham GW, Wang L-S, Vardarajan BN, Buros J, et al. Common variants at MS4A4/MS4A6E, CD2AP, CD33 and EPHA1 are associated with late-onset Alzheimer’s disease. Nat Genet. 2011;43:436–41.

Article  CAS  Google Scholar 

Guerreiro R, Wojtas A, Bras J, Carrasquillo M, Rogaeva E, Majounie E, et al. TREM2 variants in Alzheimer’s disease. New Engl J Medicine. 2013;368:117–27.

Article  CAS  Google Scholar 

Jonsson T, Stefansson H, Steinberg S, Jonsdottir I, Jonsson PV, Snaedal J, et al. Variant of TREM2 associated with the risk of Alzheimer’s disease. New Engl J Med. 2013;368:107–16.

Article  CAS  Google Scholar 

Johansson JU, Brubaker WD, Javitz H, Bergen AW, Nishita D, Trigunaite A, et al. Peripheral complement interactions with amyloid β peptide in Alzheimer’s disease: polymorphisms, structure, and function of complement receptor 1. Alzheimer’s Dementia. 2018;14:1438–49.

Article  Google Scholar 

Rogers J, Li R, Mastroeni D, Grover A, Leonard B, Ahern G, et al. Peripheral clearance of amyloid β peptide by complement C3-dependent adherence to erythrocytes. Neurobiol Aging. 2006;27:1733–9.

Article  CAS  Google Scholar 

Crehan H, Hardy J, Pocock J. Blockage of CR1 prevents activation of rodent microglia. Neurobiol Dis. 2013;54:139–49.

Article  CAS  Google Scholar 

Crehan H, Holton P, Wray S, Pocock J, Guerreiro R, Hardy J. Complement receptor 1 (CR1) and Alzheimer’s disease. Immunobiology. 2012;217:244–50.

Article  CAS  Google Scholar 

Efthymiou AG, Goate AM. Late onset Alzheimer’s disease genetics implicates microglial pathways in disease risk. Mol Neurodegener. 2017;12:43.

Article  Google Scholar 

Taylor RP, Lindorfer MA, Atkinson JP. Clearance of amyloid-beta with bispecific antibody constructs bound to erythrocytes. Alzheimer’s Dementia Transl Res Clin Interventions. 2020;6: e12067.

Google Scholar 

Ryan J, Fransquet P, Wrigglesworth J, Lacaze P. Phenotypic heterogeneity in dementia: a challenge for epidemiology and biomarker studies. Front Public Heal. 2018;6:181.

Article  Google Scholar 

Jansen IE, Savage JE, Watanabe K, Bryois J, Williams DM, Steinberg S, et al. Genome-wide meta-analysis identifies new loci and functional pathways influencing Alzheimer’s disease risk. Nat Genet. 2019;51:404–13.

Article  CAS  Google Scholar 

Redondo-García S, Peris-Torres C, Caracuel-Peramos R, Rodríguez-Manzaneque JC. ADAMTS proteases and the tumor immune microenvironment: lessons from substrates and pathologies. Matrix Biology Plus. 2020;9:100054.

Article  Google Scholar 

Mazzon C, Anselmo A, Soldani C, Cibella J, Ploia C, Moalli F, et al. Agrin is required for survival and function of monocytic cells. Blood. 2012;119:5502–11.

Article  CAS  Google Scholar 

Lambert J-C, Heath S, Even G, Campion D, Sleegers K, Hiltunen M, et al. Genome-wide association study identifies variants at CLU and CR1 associated with Alzheimer’s disease. Nat Genet. 2009;41:1094–9.

Article  CAS  Google Scholar 

Borucki DM, Toutonji A, Couch C, Mallah K, Rohrer B, Tomlinson S. Complement-mediated microglial phagocytosis and pathological changes in the development and degeneration of the visual system. Front Immunol. 2020;11:566892.

Article  CAS  Google Scholar 

Agrawal V, Sawhney N, Hickey E, McCarthy JV. Loss of Presenilin 2 function is associated with defective LPS-mediated innate immune responsiveness. Mol Neurobiol. 2016;53:3428–38.

Article  CAS  Google Scholar 

Nam H, Lee Y, Kim B, Lee J-W, Hwang S, An H-K, et al. Presenilin 2 N141I mutation induces hyperactive immune response through the epigenetic repression of REV-ERBα. Nat Commun. 2022;13:1972.

Article  CAS  Google Scholar 

Fung S, Smith CL, Prater KE, Case A, Green K, Osnis L, et al. Early-onset familial Alzheimer disease variant PSEN2 N141I heterozygosity is associated with altered microglia phenotype. J Alzheimer’s Dis. 2020;77:675–88.

Article  CAS  Google Scholar 

Mendez MF. Early-onset Alzheimer disease. Neurol Clin. 2017;35:263–81.

Article  Google Scholar 

Bellenguez C, Küçükali F, Jansen IE, Kleineidam L, Moreno-Grau S, Amin N, et al. New insights into the genetic etiology of Alzheimer’s disease and related dementias. Nat Genet. 2022;54(4):412–36.

Herda S, Raczkowski F, Mittrücker H-W, Willimsky G, Gerlach K, Kühl AA, et al. The sorting receptor sortilin exhibits a dual function in exocytic trafficking of Interferon-γ and Granzyme A in T cells. Immunity. 2012;37:854–66.

Article  CAS  Google Scholar 

Mortensen MB, Kjolby M, Gunnersen S, Larsen JV, Palmfeldt J, Falk E, et al. Targeting sortilin in immune cells reduces proinflammatory cytokines and atherosclerosis. J Clin Invest. 2014;124:5317–22.

Article  Google Scholar 

Lambrecht BN, Vanderkerken M, Hammad H. The emerging role of ADAM metalloproteinases in immunity. Nat Rev Immunol. 2018;18:745–58.

Article  CAS  Google Scholar 

Seshadri S, Fitzpatrick AL, Ikram MA, DeStefano AL, Gudnason V, Boada M, et al. Genome-wide analysis of genetic loci associated with Alzheimer disease. JAMA. 2010;303:1832–40.

Article  CAS  Google Scholar 

Sudwarts A, Ramesha S, Gao T, Ponnusamy M, Wang S, Hansen M, et al. BIN1 is a key regulator of proinflammatory and neurodegeneration-related activation in microglia. Mol Neurodegener. 2022;17:33.

Article  CAS  Google Scholar 

Nordhoff C, Hillesheim A, Walter BM, Haasbach E, Planz O, Ehrhardt C, et al. The adaptor protein FHL2 enhances the cellular innate immune response to influenza A virus infection. Cell Microbiol. 2012;14:1135–47.

Article  CAS  Google Scholar 

Wixler V. The role of FHL2 in wound healing and inflammation. Faseb J. 2019;33:7799–809.

Article  CAS  Google Scholar 

(EADI) EADI, (GERAD) G and ER in AD, (ADGC) ADGC, (CHARGE) C for H and AR in GE, Lambert J-C, Ibrahim-Verbaas CA, et al. Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer’s disease. Nat Genet. 2013;45:1452–8.

Itakura J, Sato M, Ito T, Mino M, Fushimi S, Takahashi S, et al. Spred2-deficiecy protects mice from polymicrobial septic peritonitis by enhancing inflammation and bacterial clearance. Sci Rep-uk. 2017;7:12833.

Article  Google Scholar 

Ishikawa E, Kosako H, Yasuda T, Ohmuraya M, Araki K, Kurosaki T, et al. Protein kinase D regulates positive selection of CD4+ thymocytes through phosphorylation of SHP-1. Nat Commun. 2016;7:12756.

Article  CAS  Google Scholar 

Brigas HC, Ribeiro M, Coelho JE, Gomes R, Gomez-Murcia V, Carvalho K, et al. IL-17 triggers the onset of cognitive and synaptic deficits in early stages of Alzheimer’s disease. Cell Rep. 2021;36:109574.

Article  CAS  Google Scholar 

Girondel C, Meloche S. Interleukin-17 receptor D in physiology, inflammation and cancer. Frontiers Oncol. 2021;11:656004.

Article  Google Scholar 

Schulte-Schrepping J, Reusch N, Paclik D, Baßler K, Schlickeiser S, Zhang B, et al. Severe COVID-19 is marked by a dysregulated myeloid cell compartment. Cell. 2020;182:1419-1440.e23.

Article  CAS  Google Scholar 

Utting O, Sedgmen BJ, Watts TH, Shi X, Rottapel R, Iulianella A, et al. Immune functions in mice lacking Clnk, an SLP-76-related adaptor expressed in a subset of immune cells. Mol Cell Biol. 2004;24:6067–75.

Article  CAS  Google Scholar 

Gu Y, Chae H-D, Siefring JE, Jasti AC, Hildeman DA, Williams DA. RhoH GTPase recruits and activates Zap70 required for T cell receptor signaling and thymocyte development. Nat Immunol. 2006;7:1182–90.

Article  CAS 

留言 (0)

沒有登入
gif