Transcriptomics and co-expression network analysis revealing candidate genes for the laccase activity of Trametes gibbosa

Asgher M, Bhatti HN, Ashraf M, Legge RL. Recent developments in biodegradation of industrial pollutants by white rot fungi and their enzyme system. Biodegradation. 2008;19(6):771–83. https://doi.org/10.1007/s10532-008-9185-3.

Article  CAS  Google Scholar 

Pollegioni L, Tonin F, Rosini E. Lignin-degrading enzymes. FEBS J. 2015;282(7):1190–213. https://doi.org/10.1111/febs.13224.

Article  CAS  Google Scholar 

Knežević A, Stajić M, Milovanović I, Vukojević J. Degradation of beech wood and wheat straw by Trametes gibbosa. Wood Sci Technol. 2017;51(5):1227–47.

Article  Google Scholar 

Berrin JG, Navarro D, Couturier M, Olive C, Grisel S, Haon M, et al. Exploring the natural fungal biodiversity of tropical and temperate forests toward improvement of biomass conversion. Appl Environ Microbiol. 2012;78(18):6483–90. https://doi.org/10.1128/AEM.01651-12.

Article  CAS  Google Scholar 

Levasseur A, Piumi F, Coutinho PM, Rancurel C, Asther M, Delattre M, et al. FOLy: an integrated database for the classification and functional annotation of fungal oxidoreductases potentially involved in the degradation of lignin and related aromatic compounds. Fungal Genet Biol. 2008;45(5):638–45. https://doi.org/10.1016/j.fgb.2008.01.004.

Article  CAS  Google Scholar 

Janusz G, Pawlik A, Sulej J, Swiderska-Burek U, Jarosz-Wilkolazka A, Paszczynski A. Lignin degradation: microorganisms, enzymes involved, genomes analysis and evolution. FEMS Microbiol Rev. 2017;41(6):941–62. https://doi.org/10.1093/femsre/fux049.

Article  CAS  Google Scholar 

Chi YJ, Zhang J. Gene expression of the white-rot fungus Lenzites gibbosa during wood degradation. Mycologia. 2022:1–16. https://doi.org/10.1080/00275514.2022.2072148.

Dittmer NT, Suderman RJ, Jiang H, Zhu YC, Gorman MJ, Kramer KJ, et al. Characterization of cDNAs encoding putative laccase-like multicopper oxidases and developmental expression in the tobacco hornworm, Manduca sexta, and the malaria mosquito, Anopheles gambiae. Insect Biochem Mol Biol. 2004;34(1):29–41. https://doi.org/10.1016/j.ibmb.2003.08.003.

Article  CAS  Google Scholar 

Baldrian P. Fungal laccases - occurrence and properties. FEMS Microbiol Rev. 2006;30(2):215–42. https://doi.org/10.1111/j.1574-4976.2005.00010.x.

Article  CAS  Google Scholar 

Sharma P, Goel R, Capalash N. Bacterial laccases. World J Microbiol Biotechnol. 2007;23:823–32. https://doi.org/10.1007/s11274-006-9305-3.

Article  CAS  Google Scholar 

Lu S, Li Q, Wei H, Chang MJ, Tunlaya-Anukit S, Kim H, et al. Ptr-miR397a is a negative regulator of laccase genes affecting lignin content in Populus trichocarpa. Proc Natl Acad Sci U S A. 2013;110(26):10848–53. https://doi.org/10.1073/pnas.1308936110.

Article  Google Scholar 

Yan L, Xu R, Bian Y, Li H, Zhou Y. Expression profile of laccase gene family in white-rot basidiomycete Lentinula edodes under different environmental stresses. Genes (Basel). 2019;10(12). https://doi.org/10.3390/genes10121045.

Giardina P, Faraco V, Pezzella C, Piscitelli A, Vanhulle S, Sannia G. Laccases: a never-ending story. Cell Mol Life Sci. 2010;67(3):369–85. https://doi.org/10.1007/s00018-009-0169-1.

Article  CAS  Google Scholar 

Piscitelli A, Pezzella C, Giardina P, Faraco V, Giovanni S. Heterologous laccase production and its role in industrial applications. Bioeng Bugs. 2010;1(4):252–62. https://doi.org/10.4161/bbug.1.4.11438.

Article  Google Scholar 

Bettin F, Cousseau F, Martins K, Boff NA, Zaccaria S, Moura da Silveira M, et al. Phenol removal by laccases and other phenol oxidases of Pleurotus sajor-caju PS-2001 in submerged cultivations and aqueous mixtures. J Environ Manage. 2019;236:581–90. https://doi.org/10.1016/j.jenvman.2019.02.011.

Article  CAS  Google Scholar 

Ma X, Liu L, Li Q, Liu Y, Yi L, Ma L, et al. High-level expression of a bacterial laccase, CueO from Escherichia coli K12 in Pichia pastoris GS115 and its application on the decolorization of synthetic dyes. Enzyme Microb Technol. 2017;103:34–41. https://doi.org/10.1016/j.enzmictec.2017.04.004.

Article  CAS  Google Scholar 

Liu Q, Liu J, Hong D, Sun K, Li S, Latif A, et al. Fungal laccase-triggered 17beta-estradiol humification kinetics and mechanisms in the presence of humic precursors. J Hazard Mater. 2021;412:125197. https://doi.org/10.1016/j.jhazmat.2021.125197.

Article  CAS  Google Scholar 

Coconi Linares N, Fernandez F, Loske AM, Gomez-Lim MA. Enhanced delignification of lignocellulosic biomass by recombinant fungus Phanerochaete chrysosporium overexpressing laccases and peroxidases. J Mol Microbiol Biotechnol. 2018;28(1):1–13. https://doi.org/10.1159/000485976.

Article  CAS  Google Scholar 

Liu W, Chao Y, Liu S, Bao H, Qian S. Molecular cloning and characterization of a laccase gene from the basidiomycete Fome lignosus and expression in Pichia pastoris. Appl Microbiol Biotechnol. 2003;63(2):174–81. https://doi.org/10.1007/s00253-003-1398-0.

Article  CAS  Google Scholar 

Eggert C, LaFayette PR, Temp U, Eriksson KE, Dean JF. Molecular analysis of a laccase gene from the white rot fungus Pycnoporus cinnabarinus. Appl Environ Microbiol. 1998;64(5):1766–72. https://doi.org/10.1128/AEM.64.5.1766-1772.1998.

Article  CAS  Google Scholar 

Xiao YZ, Hong YZ, Li JF, Hang J, Tong PG, Fang W, et al. Cloning of novel laccase isozyme genes from Trametes sp. AH28–2 and analyses of their differential expression. Appl Microbiol Biotechnol. 2006;71(4):493–501. https://doi.org/10.1007/s00253-005-0188-2.

Article  CAS  Google Scholar 

Janusz G, Kucharzyk KH, Pawlik A, Staszczak M, Paszczynski AJ. Fungal laccase, manganese peroxidase and lignin peroxidase: gene expression and regulation. Enzyme Microb Technol. 2013;52(1):1–12. https://doi.org/10.1016/j.enzmictec.2012.10.003.

Article  CAS  Google Scholar 

Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics. 2008;9:559. https://doi.org/10.1186/1471-2105-9-559.

Article  CAS  Google Scholar 

Song ZY, Chao F, Zhuo ZY, Ma Z, Li WZ, Chen G. Identification of hub genes in prostate cancer using robust rank aggregation and weighted gene co-expression network analysis. Aging-Us. 2019;11(13):4736–56. https://doi.org/10.18632/aging.102087.

Article  CAS  Google Scholar 

Zhang H, Fu Y, Guo H, Zhang L, Wang C, Song W, et al. Transcriptome and proteome-based network analysis reveals a model of gene activation in wheat resistance to stripe rust. Int J Mol Sci. 2019;20(5). https://doi.org/10.3390/ijms20051106.

Kong Y, Feng ZC, Zhang YL, Liu XF, Ma Y, Zhao ZM, et al. identification of immune-related genes contributing to the development of glioblastoma using weighted gene co-expression Network Analysis. Front Immunol. 2020;11. ARTN 1281. https://doi.org/10.3389/fimmu.2020.01281.

Vrsanska M, Voberkova S, Langer V, Palovcikova D, Moulick A, Adam V, et al. Induction of laccase, lignin peroxidase and manganese peroxidase activities in white-rot fungi using copper complexes. Molecules. 2016;21(11):1553. https://doi.org/10.3390/molecules21111553.

Article  CAS  Google Scholar 

Sudarson J, Ramalingam S, Kishorekumar P, Venkatesan K. Expeditious quantification of lignocellulolytic enzymes from indigenous wood rot and litter degrading fungi from tropical dry evergreen forests of Tamil Nadu. Biotechnol Res Int. 2014;2014:127848. https://doi.org/10.1155/2014/127848.

Article  CAS  Google Scholar 

Lin JF, Liu ZM, Chen XY, Guo LQ, Wang J. Evaluation of assay methods for determining fungal laccase activity. Chin J Bioprocess Eng. 2009;7(4):1–8.

CAS  Google Scholar 

Gao C, Fu Q, Su B, Zhou S, Liu F, Song L, et al. Transcriptomic profiling revealed the signatures of intestinal barrier alteration and pathogen entry in turbot (Scophthalmus maximus) following Vibrio anguillarum challenge. Dev Comp Immunol. 2016;65:159–68. https://doi.org/10.1016/j.dci.2016.07.007.

Article  CAS  Google Scholar 

Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg SL. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 2013;14(4):R36. https://doi.org/10.1186/gb-2013-14-4-r36.

Article  CAS  Google Scholar 

Hage H, Miyauchi S, Viragh M, Drula E, Min B, Chaduli D, et al. Gene family expansions and transcriptome signatures uncover fungal adaptations to wood decay. Environ Microbiol. 2021;23(10):5716–32. https://doi.org/10.1111/1462-2920.15423.

Article  CAS  Google Scholar 

Florea L, Song L, Salzberg SL. Thousands of exon skipping events differentiate among splicing patterns in sixteen human tissues. F1000Res. 2013;2:188. https://doi.org/10.12688/f1000research.2-188.v2.

Article  Google Scholar 

Ullmannova V, Haskovec C. The use of housekeeping genes (HKG) as an internal control for the detection of gene expression by quantitative real-time RT-PCR. Folia Biol-Prague. 2003;49(6):211–6.

CAS  Google Scholar 

Wang N, Wang R, Wang R, Chen S. Transcriptomics analysis revealing candidate networks and genes for the body size sexual dimorphism of Chinese tongue sole (Cynoglossus semilaevis). Funct Integr Genomics. 2018;18(3):327–39. https://doi.org/10.1007/s10142-018-0595-y.

Article  CAS  Google Scholar 

Lou Y, Tian GY, Song Y, Liu YL, Chen YD, Shi JP, et al. Characterization of transcriptional modules related to fibrosing-NAFLD progression. Sci Rep. 2017;7(1):4748. https://doi.org/10.1038/s41598-017-05044-2.

Article  CAS  Google Scholar 

Jin J, Tian F, Yang DC, Meng YQ, Kong L, Luo J, et al. PlantTFDB 4.0: toward a central hub for transcription factors and regulatory interactions in plants. Nucleic Acids Res. 2017;45(D1):D1040–5. https://doi.org/10.1093/nar/gkw982.

Article  CAS  Google Scholar 

Omura T. Forty years of cytochrome P450. Biochem Biophys Res Commun. 1999;266(3):690–8. https://doi.org/10.1006/bbrc.1999.1887.

Article  CAS  Google Scholar 

Sun J, Zhang T, Li Y, Wang X, Chen J. Functional characterization of the ABC transporter TaPdr2 in the tolerance of biocontrol the fungus Trichoderma atroviride T23 to dichlorvos stress. Biol Control. 2019;129:102–8. https://doi.org/10.1016/j.biocontrol.2018.10.004.

Article  CAS  Google Scholar 

Ferreira P, Carro J, Serrano A, Martinez AT. A survey of genes encoding H2O2-producing GMC oxidoreductases in 10 Polyporales genomes. Mycologia. 2015;107(6):1105–19. https://doi.org/10.3852/15-027.

Article  CAS  Google Scholar 

Kracher D, Scheiblbrandner S, Felice AK, Breslmayr E, Preims M, Ludwicka K, et al. Extracellular electron transfer systems fuel cellulose oxidative degradation. Science. 2016;352(6289):1098–101. https://doi.org/10.1126/science.aaf3165.

Article  CAS  Google Scholar 

Matsuzaki F, Shimizu M, Wariishi H. Proteomic and metabolomic analyses of the white-rot fungus Phanerochaete chrysosporium exposed to exogenous benzoic acid. J Proteome Res. 2008;7(6):2342–50. https://doi.org/10.1021/pr700617s.

Article  CAS  Google Scholar 

Curnow AW, Tumbula DL, Pelaschier JT, Min B, Soll D. Glutamyl-tRNA(Gln) amidotransferase in Deinococcus radiodurans may be confined to asparagine biosynthesis. Proc Natl Acad Sci U S A. 1998;95(22):12838–43. https://doi.org/10.1073/pnas.95.22.12838.

Article  CAS 

留言 (0)

沒有登入
gif