Spectrins: molecular organizers and targets of neurological disorders

Bennett, V. & Lorenzo, D. N. An adaptable spectrin/ankyrin-based mechanism for long-range organization of plasma membranes in vertebrate tissues. Curr. Top. Membr. 77, 143–184 (2016).

Article  CAS  Google Scholar 

Lorenzo, D. N. Cargo hold and delivery: ankyrins, spectrins, and their functional patterning of neurons. Cytoskeleton 77, 129–148 (2020).

Article  CAS  Google Scholar 

Bennett, V. & Lorenzo, D. N. Spectrin- and ankyrin-based membrane domains and the evolution of vertebrates. Curr. Top. Membr. 72, 1–37 (2013).

Article  CAS  Google Scholar 

Zhou, R., Han, B., Xia, C. & Zhuang, X. Membrane-associated periodic skeleton is a signaling platform for RTK transactivation in neurons. Science 365, 929–934 (2019).

Article  CAS  Google Scholar 

Marchesi, V. T. & Steers, E. J. Selective solubilization of a protein component of the red cell membrane. Science 159, 203–204 (1968).

Article  CAS  Google Scholar 

Winkelmann, J. C. et al. Full-length sequence of the cDNA for human erythroid β-spectrin. J. Biol. Chem. 265, 11827–11832 (1990).

Article  CAS  Google Scholar 

Bennett, V., Davis, J. & Fowler, W. E. Brain spectrin, a membrane-associated protein related in structure and function to erythrocyte spectrin. Nature 299, 126–131 (1982).

Article  CAS  Google Scholar 

Hu, R. J., Watanabe, M. & Bennett, V. Characterization of human brain cDNA encoding the general isoform of β-spectrin. J. Biol. Chem. 267, 18715–18722 (1992).

Article  CAS  Google Scholar 

Berghs, S. et al. βIV spectrin, a new spectrin localized at axon initial segments and nodes of Ranvier in the central and peripheral nervous system. J. Cell Bio 151, 985–1002 (2000).

Article  CAS  Google Scholar 

Hund, T. J. et al. A β(IV)-spectrin/CaMKII signaling complex is essential for membrane excitability in mice. J. Clin. Invest. 120, 3508–3519 (2010).

Article  CAS  Google Scholar 

Stabach, P. R. & Morrow, J. S. Identification and characterization of βV spectrin, a mammalian ortholog of Drosophila βH spectrin. J. Biol. Chem. 275, 21385–21395 (2000).

Article  CAS  Google Scholar 

Papal, S. et al. The giant spectrin βV couples the molecular motors to phototransduction and Usher syndrome type I proteins along their trafficking route. Hum. Mol. Genet. 22, 3773–3788 (2013).

Article  CAS  Google Scholar 

Ohara, O., Ohara, R., Yamakawa, H., Nakajima, D. & Nakayama, M. Characterization of a new β-spectrin gene which is predominantly expressed in brain. Brain Res. Mol. Brain Res. 57, 181–192 (1998).

Article  CAS  Google Scholar 

Stankewich, M. C. et al. A widely expressed βIII spectrin associated with Golgi and cytoplasmic vesicles. Proc. Natl Acad. Sci. USA 95, 14158–14163 (1998).

Article  CAS  Google Scholar 

Wasenius, V. M. et al. Primary structure of the brain α-spectrin. J. Cell Bio. 108, 79–93 (1989).

Article  CAS  Google Scholar 

Sahr, K. E. et al. The complete cDNA and polypeptide sequences of human erythroid α-spectrin. J. Biol. Chem. 265, 4434–4443 (1990).

Article  CAS  Google Scholar 

Hayes, N. V. et al. Identification of a novel C-terminal variant of βII spectrin: two isoforms of βII spectrin have distinct intracellular locations and activities. J. Cell Sci. 113, 2023–2034 (2000).

Article  CAS  Google Scholar 

Uemoto, Y. et al. Specific role of the truncated βIV-spectrin Sigma6 in sodium channel clustering at axon initial segments and nodes of Ranvier. J. Biol. Chem. 282, 6548–6555 (2007).

Article  CAS  Google Scholar 

Grum, V. L., MacDonald, R. I. & Mondragón, A. Structures of two repeats of spectrin suggest models of flexibility. Cell 98, 523–535 (1999).

Article  CAS  Google Scholar 

Ipsaro, J. J. et al. Crystal structure and functional interpretation of the erythrocyte spectrin tetramerization domain complex. Blood 115, 4843–4852 (2010).

Article  CAS  Google Scholar 

Speicher, D. W., Weglarz, L. & DeSilva, T. M. Properties of human red cell spectrin heterodimer (side-to-side) assembly and identification of an essential nucleation site. J. Biol. Chem. 267, 14775–14782 (1992).

Article  CAS  Google Scholar 

Rief, M., Pascual, J., Saraste, M. & Gaub, H. E. Single molecule force spectroscopy of spectrin repeats: low unfolding forces in helix bundles. J. Mol. Biol. 286, 553–561 (1999).

Article  CAS  Google Scholar 

Krieger, C. C. et al. Cysteine shotgun–mass spectrometry (CS-MS) reveals dynamic sequence of protein structure changes within mutant and stressed cells. Proc. Natl Acad. Sci. USA 108, 8269–8274 (2011).

Article  CAS  Google Scholar 

Heidemann, S. R. & Bray, D. Tension-driven axon assembly: a possible mechanism. Front. Cell. Neurosci. 9, 316 (2015).

Article  Google Scholar 

Šmít, D., Fouquet, C., Pincet, F., Zapotocky, M. & Trembleau, A. Axon tension regulates fasciculation/defasciculation through the control of axon shaft zippering. eLife 6, e19907 (2017).

Article  Google Scholar 

Leterrier, C. & Pullarkat, P. A. Mechanical role of the submembrane spectrin scaffold in red blood cells and neurons. J. Cell Sci. 135, jcs259356 (2022).

Article  CAS  Google Scholar 

Byers, T. J. & Branton, D. Visualization of the protein associations in the erythrocyte membrane skeleton. Proc. Natl Acad. Sci. USA 82, 6153–6157 (1985).

Article  CAS  Google Scholar 

Gardner, K. & Bennett, V. Modulation of spectrin–actin assembly by erythrocyte adducin. Nature 328, 359–362 (1987).

Article  CAS  Google Scholar 

Kuhlman, P. A., Hughes, C. A., Bennett, V. & Fowler, V. M. A new function for adducin. Calcium/calmodulin-regulated capping of the barbed ends of actin filaments. J. Biol. Chem. 271, 7986–7991 (1996).

Article  CAS  Google Scholar 

Weber, A., Pennise, C. R., Babcock, G. G. & Fowler, V. M. Tropomodulin caps the pointed ends of actin filaments. J. Cell Biol. 127, 1627–1635 (1994).

Article  CAS  Google Scholar 

Ursitti, J. A. & Fowler, V. M. Immunolocalization of tropomodulin, tropomyosin and actin in spread human erythrocyte skeletons. J. Cell Sci. 107, 1633–1639 (1994).

Article  CAS  Google Scholar 

Pan, L., Yan, R., Li, W. & Xu, K. Super-resolution microscopy reveals the native ultrastructure of the erythrocyte cytoskeleton. Cell Rep. 22, 1151–1158 (2018).

Article  CAS  Google Scholar 

Han, B., Zhou, R., Xia, C. & Zhuang, X. Structural organization of the actin–spectrin-based membrane skeleton in dendrites and soma of neurons. Proc. Natl Acad. Sci. USA 114, E6678–E6685 (2017).

Article  CAS  Google Scholar 

Xu, K., Zhong, G. & Zhuang, X. Actin, spectrin, and associated proteins form a periodic cytoskeletal structure in axons. Science 339, 452–456 (2013).

Article  CAS  Google Scholar 

Leterrier, C. Putting the axonal periodic scaffold in order. Curr. Opin. Neurobiol. 69, 33–40 (2021).

Article  CAS  Google Scholar 

D’Este, E. et al. Subcortical cytoskeleton periodicity throughout the nervous system. Sci. Rep. 6, 22741 (2016).

Article  Google Scholar 

He, J. et al. Prevalent presence of periodic actin–spectrin-based membrane skeleton in a broad range of neuronal cell types and animal species. Proc. Natl Acad. Sci. USA 113, 6029–6034 (2016).

Article  CAS  Google Scholar 

Zhong, G. et al. Developmental mechanism of the periodic membrane skeleton in axons. eLife 3, e04581 (2014).

Article  Google Scholar 

Hofmann, M. et al. Cytoskeletal assembly in axonal outgrowth and regeneration analyzed on the nanoscale. Sci. Rep. 12, 14387 (2022).

Article  CAS  Google Scholar 

Leite, S. C. et al. The actin-binding protein α-adducin is required for maintaining axon diameter. Cell Rep. 15, 490–498 (2016).

Article  CAS  Google Scholar 

Lorenzo, D. N. et al. βII-Spectrin promotes mouse brain connectivity through stabilizing axonal plasma membranes and enabling axonal organelle transport. Proc. Natl Acad. Sci. USA 116, 15686–15695 (2019).

Article  CAS  Google Scholar 

Cousin, M. A. et al. Pathogenic SPTBN1 variants cause an autosomal dominant neurodevelopmental syndrome. Nat. Genet. 53, 1006–1021 (2021).

Article  CAS  Google Scholar 

Hammarlund, M., Jorgensen, E. M. & Bastiani, M. J. Axons break in animals lacking β-spectrin. J. Cell Biol. 176, 269–275 (2007).

Article  CAS  Google Scholar 

Law, R. et al. Cooperativity in forced unfolding of tandem spectrin repeats. Biophys. J. 84, 533–544 (2003).

Article  CAS  Google Scholar 

Dubey, S. et al. The axonal actin–spectrin lattice acts as a tension buffering shock absorber. eLife 9, e51772 (2020).

Article  CAS  Google Scholar 

Wang, T. et al. Radial contractility of actomyosin rings facilitates axonal trafficking and structural stability. J. Cell Biol. 219, e201902001 (2020).

留言 (0)

沒有登入
gif