Image-based robotic unicompartmental knee arthroplasty allowed to match the rotation of the tibial implant with the native kinematic knee alignment

Tan MWP, Ng SWL, Chen JY, Liow MHL, Lo NN, Yeo SJ (2021) Long-term functional outcomes and quality of life at minimum 10-year follow-up after fixed-bearing unicompartmental knee arthroplasty and total knee arthroplasty for isolated medial compartment osteoarthritis. J Arthroplasty 36(4):1269–1276. https://doi.org/10.1016/j.arth.2020.10.049

Article  Google Scholar 

Mikkelsen M, Wilson HA, Gromov K, Price AJ, Troelsen A (2022) Comparing surgical strategies for end-stage anteromedial osteoarthritis : total versus unicompartmental knee arthroplasty. Bone Jt Open 3(5):441–447. https://doi.org/10.1302/2633-1462.35.BJO-2021-0174.R1

Article  Google Scholar 

Barbadoro P, Ensini A, Leardini A, d’Amato M, Feliciangeli A, Timoncini A et al (2014) Tibial component alignment and risk of loosening in unicompartmental knee arthroplasty: a radiographic and radiostereometric study. Knee Surg Sports Traumatol Arthrosc 22(12):3157–3162. https://doi.org/10.1007/s00167-014-3147-6

Article  CAS  Google Scholar 

Epinette JA, Brunschweiler B, Mertl P, Mole D, Cazenave A, French Society for H et al (2012) Unicompartmental knee arthroplasty modes of failure: wear is not the main reason for failure: a multicentre study of 418 failed knees. Orthop Traumatol Surg Res 98(6 Suppl):S124-130. https://doi.org/10.1016/j.otsr.2012.07.002

Article  Google Scholar 

Ko YB, Gujarathi MR, Oh KJ (2015) Outcome of unicompartmental knee arthroplasty: a systematic review of comparative studies between fixed and mobile bearings focusing on complications. Knee Surg Relat Res 27(3):141–148. https://doi.org/10.5792/ksrr.2015.27.3.141

Article  Google Scholar 

Batailler C, White N, Ranaldi FM, Neyret P, Servien E, Lustig S (2019) Improved implant position and lower revision rate with robotic-assisted unicompartmental knee arthroplasty. Knee Surg Sports Traumatol Arthrosc 27(4):1232–1240. https://doi.org/10.1007/s00167-018-5081-5

Article  Google Scholar 

Canetti R, Batailler C, Bankhead C, Neyret P, Servien E, Lustig S (2018) Faster return to sport after robotic-assisted lateral unicompartmental knee arthroplasty: a comparative study. Arch Orthop Trauma Surg 138(12):1765–1771. https://doi.org/10.1007/s00402-018-3042-6

Article  CAS  Google Scholar 

Bell SW, Anthony I, Jones B, MacLean A, Rowe P, Blyth M (2016) Improved accuracy of component positioning with robotic-assisted unicompartmental knee arthroplasty: data from a prospective, randomized controlled study. J Bone Joint Surg Am 98(8):627–635. https://doi.org/10.2106/JBJS.15.00664

Article  Google Scholar 

van der List JP, Chawla H, Joskowicz L, Pearle AD (2016) Current state of computer navigation and robotics in unicompartmental and total knee arthroplasty: a systematic review with meta-analysis. Knee Surg Sports Traumatol Arthrosc 24(11):3482–3495. https://doi.org/10.1007/s00167-016-4305-9

Article  Google Scholar 

Zambianchi F, Franceschi G, Rivi E, Banchelli F, Marcovigi A, Nardacchione R et al. (2019) Does component placement affect short-term clinical outcome in robotic-arm assisted unicompartmental knee arthroplasty? Bone Joint J 101-B(4):435–442. https://doi.org/10.1302/0301-620X.101B4.BJJ-2018-0753.R1

Hiranaka T, Pandit H, Gill HS, Hida Y, Uemoto H, Doita M et al (2013) Medial femoral head border is a reliable and reproducible reference for axis determination for femoral component of unicompartmental knee arthroplasty. Knee Surg Sports Traumatol Arthrosc 21(11):2442–2446. https://doi.org/10.1007/s00167-012-2227-8

Article  CAS  Google Scholar 

Preston B, Harris S, Villet L, Mattathil C, Cobb J, Riviere C (2022) The medial condylar wall is a reliable landmark to kinematically align the femoral component in medial UKA: an in-silico study. Knee Surg Sports Traumatol Arthrosc 30(9):3220–3227. https://doi.org/10.1007/s00167-021-06683-9

Article  Google Scholar 

Tsukamoto I, Akagi M, Mori S, Inoue S, Nakagawa K, Yamagishi K (2020) Referencing the substitute anteroposterior line of the tibia improves rotational alignment of the tibial component in medial unicompartmental knee arthroplasty. Knee 27(5):1458–1466. https://doi.org/10.1016/j.knee.2020.07.086

Article  Google Scholar 

Fujita M, Hiranaka T, Mai B, Kamenaga T, Tsubosaka M, Takayama K et al (2021) External rotation of the tibial component should be avoided in lateral unicompartmental knee arthroplasty. Knee 3070-77. https://doi.org/10.1016/j.knee.2021.03.016

Makhdom AM, Kerr GJ, Wu E, Lonner JH (2020) Rotational alignment errors can occur in unicompartmental knee arthroplasty if anatomical landmarks are misused: a preoperative CT scan analysis. Knee 27(1):242–248. https://doi.org/10.1016/j.knee.2019.10.003

Article  Google Scholar 

Hallen LG, Lindahl O (1966) The “screw-home” movement in the knee-joint. Acta Orthop Scand 37(1):97–106. https://doi.org/10.3109/17453676608989407

Article  CAS  Google Scholar 

Johal P, Williams A, Wragg P, Hunt D, Gedroyc W (2005) Tibio-femoral movement in the living knee. A study of weight bearing and non-weight bearing knee kinematics using “interventional” MRI. J Biomech 38(2):269–276. https://doi.org/10.1016/j.jbiomech.2004.02.008

Article  CAS  Google Scholar 

Vedi V, Williams A, Tennant SJ, Spouse E, Hunt DM, Gedroyc WM (1999) Meniscal movement. An in-vivo study using dynamic MRI. J Bone Joint Surg Br 81(1):37–41. https://doi.org/10.1302/0301-620x.81b1.8928

Article  CAS  Google Scholar 

Pennington DW, Swienckowski JJ, Lutes WB, Drake GN (2006) Lateral unicompartmental knee arthroplasty: survivorship and technical considerations at an average follow-up of 12.4 years. J Arthroplasty 21(1):13–17. https://doi.org/10.1016/j.arth.2004.11.021

Article  Google Scholar 

Paley D, Tetsworth K (1992) Mechanical axis deviation of the lower limbs. Preoperative planning of uniapical angular deformities of the tibia or femur. Clin Orthop Relat Res 280:48–64

Google Scholar 

Ollivier M, Abdel MP, Parratte S, Argenson JN (2014) Lateral unicondylar knee arthroplasty (UKA): contemporary indications, surgical technique, and results. Int Orthop 38(2):449–455. https://doi.org/10.1007/s00264-013-2222-9

Article  Google Scholar 

Servien E, Fary C, Lustig S, Demey G, Saffarini M, Chomel S et al (2011) Tibial component rotation assessment using CT scan in medial and lateral unicompartmental knee arthroplasty. Orthop Traumatol Surg Res 97(3):272–275. https://doi.org/10.1016/j.otsr.2010.11.002

Article  CAS  Google Scholar 

Zambianchi F, Franceschi G, Banchelli F, Marcovigi A, Ensini A, Catani F (2022) Robotic arm-assisted lateral unicompartmental knee arthroplasty: how are components aligned? J Knee Surg 35(11):1214–1222. https://doi.org/10.1055/s-0040-1722346

Article  Google Scholar 

Kamenaga T, Hiranaka T, Takayama K, Tsubosaka M, Kuroda R, Matsumoto T (2019) Adequate positioning of the tibial component is key to avoiding bearing impingement in oxford unicompartmental knee arthroplasty. J Arthroplasty 34(11):2606–2613. https://doi.org/10.1016/j.arth.2019.05.054

Article  Google Scholar 

Tsukamoto I, Akagi M, Mori S, Inoue S, Asada S, Matsumura F (2017) Anteroposterior rotational references of the tibia for medial unicompartmental knee arthroplasty in japanese patients. J Arthroplasty 32(10):3169–3175. https://doi.org/10.1016/j.arth.2017.04.052

Article  Google Scholar 

Lee SY, Chay S, Lim HC, Bae JH (2017) Tibial component rotation during the unicompartmental knee arthroplasty: is the anterior superior iliac spine an appropriate landmark? Knee Surg Sports Traumatol Arthrosc 25(12):3723–3732. https://doi.org/10.1007/s00167-016-4192-0

Article  Google Scholar 

Siston RA, Goodman SB, Patel JJ, Delp SL, Giori NJ (2006) The high variability of tibial rotational alignment in total knee arthroplasty. Clin Orthop Relat Res 45265-69. https://doi.org/10.1097/01.blo.0000229335.36900.a0

Uehara K, Kadoya Y, Kobayashi A, Ohashi H, Yamano Y (2002) Bone anatomy and rotational alignment in total knee arthroplasty. Clin Orthop Relat Res 402:196–201. https://doi.org/10.1097/00003086-200209000-00018

Article  Google Scholar 

Yoshioka Y, Siu DW, Scudamore RA, Cooke TD (1989) Tibial anatomy and functional axes. J Orthop Res 7(1):132–137. https://doi.org/10.1002/jor.1100070118

Article  CAS  Google Scholar 

Small SR, Berend ME, Rogge RD, Archer DB, Kingman AL, Ritter MA (2013) Tibial loading after UKA: evaluation of tibial slope, resection depth, medial shift and component rotation. J Arthroplasty 28(9 Suppl):179–183. https://doi.org/10.1016/j.arth.2013.01.004

Article  Google Scholar 

Park KK, Han CD, Yang IH, Lee WS, Han JH, Kwon HM (2019) Robot-assisted unicompartmental knee arthroplasty can reduce radiologic outliers compared to conventional techniques. PLoS One 14(12):e0225941. https://doi.org/10.1371/journal.pone.0225941

Article  CAS  Google Scholar 

Lonner JH, John TK, Conditt MA (2010) Robotic arm-assisted UKA improves tibial component alignment: a pilot study. Clin Orthop Relat Res 468(1):141–146. https://doi.org/10.1007/s11999-009-0977-5

Article  Google Scholar 

Kayani B, Konan S, Pietrzak JRT, Huq SS, Tahmassebi J, Haddad FS (2018) The learning curve associated with robotic-arm assisted unicompartmental knee arthroplasty: a prospective cohort study. Bone Joint J 100-B(8):1033–1042. https://doi.org/10.1302/0301-620X.100B8.BJJ-2018-0040.R1

Sires JD, Wilson CJ (2021) CT validation of intraoperative implant position and knee alignment as determined by the MAKO total knee arthroplasty system. J Knee Surg 34(10):1133–1137. https://doi.org/10.1055/s-0040-1701447

Article  Google Scholar 

留言 (0)

沒有登入
gif