Hip arthroplasty dislocation risk calculator: evaluation of one million primary implants and twenty-five thousand dislocations with deep learning artificial intelligence in a systematic review of reviews

Kunutsor SK, Barrett MC, Beswick AD, Judge A, Blom AW, Wylde V, et al. (2019) Risk factors for dislocation after primary total hip replacement: a systematic review and meta-analysis of 125 studies involving approximately five million hip replacements. Lancet Rheumatol;1:e111e21

Berry DJ, Von Knoch M, Schleck CD, Harmsen WS (2005) Effect of femoral head diameter and operative approach on risk of dislocation after primary total hip arthroplasty. J Bone Jt Surg - Ser A 87:2456–2463. https://doi.org/10.2106/JBJS.D.02860

Article  Google Scholar 

Buckland AJ, Puvanesarajah V, Vigdorchik J, Schwarzkopf R, Jain A, Klineberg EO, Hart RA, Callaghan JJ, Hassanzadeh H (2017) Dislocation of a primary total hip arthroplasty is more common in patients with a lumbar spinal fusion. Bone Joint J 99-B(5):585–91

Article  Google Scholar 

Abdel MP, von Roth P, Jennings MT, Hanssen AD, Pagnano MW (2016) What safe zone? The vast majority of dislocated THAs are within the Lewinnek safe zone for acetabular component position. Clin Orthop Relat Res 474(2):386–391. https://doi.org/10.1007/s11999-015-4432-5

Article  Google Scholar 

Seagrave KG, Troelsen A, Malchau H et al (2017) Acetabular cup position and risk of dislocation in primary total hip arthroplasty: a systematic review of the literature. Acta Orthop 88:10. https://doi.org/10.1080/17453674.2016.1251255

Article  Google Scholar 

Buckland AJ, Puvanesarajah V, Vigdorchik J et al (2017) Dislocation of a primary total hip arthroplasty is more common in patients with a lumbar spinal fusion. Bone and Joint Journal 99B:585–591. https://doi.org/10.1302/0301-620X.99B5.BJJ-2016-0657.R1

Article  Google Scholar 

Vigdorchik JM, Sharma AK, Buckland AJ et al (2021) Otto Aufranc Award: a simple hip-spine classification for total hip arthroplasty: validation and a large multicentre series. Bone Joint J 103-B(7 Supple B):17–24. https://doi.org/10.1302/0301-620X.103B7

Article  Google Scholar 

Wyles CC, Maradit-Kremers H, Larson DR, Lewallen DG, Taunton MJ, Trousdale RT, Pagnano MW, Berry DJ, Sierra RJ (2022) Creation of a total hip arthroplasty patient-specific dislocation risk calculator. J Bone Joint Surg Am 104(12):1068–1080. https://doi.org/10.2106/JBJS.21.01171

Article  Google Scholar 

Danaei B, McPhee J (2022) Model-based acetabular cup orientation optimization based on minimizing the risk of edge-loading and implant impingement following total hip arthroplasty. J Biomech Eng. 144(11):111008. https://doi.org/10.1115/1.4054866

Article  Google Scholar 

Tang H, Li Y, Zhou Y, Wang S, Zhao Y, Ma ZA (2022) Modeling study of a patient-specific safe zone for THA: calculation, validation, and key factors based on standing and sitting sagittal pelvic tilt. Clin Orthop Relat Res 480(1):191–205. https://doi.org/10.1097/CORR.0000000000001923

Article  Google Scholar 

Mortazavi SMJ, Ghadimi E, Ardakani MV, Razzaghof M, Ghasemi MA, Nili A, Vafaei A, Moharrami A, Rasta S (2022) Risk factors of dislocation after total hip arthroplasty in patients with developmental dysplasia of the hip. Int Orthop 46(4):749–759. https://doi.org/10.1007/s00264-021-05294

Article  Google Scholar 

Wu S, Roberts K, Datta S, Du J, Ji Z, Si Y et al (2020) Deep learning in clinical natural language processing: a methodical review. J Am Med Inf Assoc 27:457–470. https://doi.org/10.1093/jamia/ocz200

Article  Google Scholar 

Fernandez A, Garcia S, Herrera F, Chawla NV (2018) SMOTE for learning from imbalanced data: progress and challenges, marking the 15-year anniversary. J Art Intell Res 61(1):863–905. https://doi.org/10.1613/jair.1.11192

Article  Google Scholar 

Lundberg SM, Lee S-I. A (2017) Unified approach to interpreting model predictions. NIPS; New York: Curran Associates;. pp. 4765–4774

Meng Y, Yang N, Qian Z, Zhang G (2020) What makes an online review more helpful: an interpretation framework using XGBoost and SHAP values. J Theor Appl Electron Res 16(3):466–490. https://doi.org/10.3390/jtaer16030029

Article  Google Scholar 

Girard J, Kern G, Migaud H, Delaunay C, Ramdane N, Hamadouche M (2013) Société française de chirurgie orthopédique et traumatologique Primary total hip arthroplasty revision due to dislocation: prospective French multicenter study. Orthop Traumatol Surg Res 99(5):549–53. https://doi.org/10.1016/j.otsr.2013.03.026

Article  CAS  Google Scholar 

Skoogh O, Tsikandylakis G, Mohaddes M, Nemes S, Odin D, Grant P, Rolfson O (2019) Contemporary posterior surgical approach in total hip replacement: still more reoperations due to dislocation compared with direct lateral approach? An observational study of the Swedish Hip Arthroplasty Register including 156,979 hips. Acta Orthop 90(5):411–416. https://doi.org/10.1080/17453674.2019.1610269

Article  Google Scholar 

Jobory A, Kärrholm J, Hansson S, Åkesson K, Rogmark C (2021) Dislocation of hemiarthroplasty after hip fracture is common and the risk is increased with posterior approach: result from a national cohort of 25,678 individuals in the Swedish Hip Arthroplasty Register. Acta Orthop 92(4):413–418. https://doi.org/10.1080/17453674.2021.1906517

Article  Google Scholar 

Blaizot A, Veettil SK, Saidoung P et al (2022) Using artificial intelligence methods for systematic review in health sciences: a systematic review. Research Synthesis Methods 13:353–362. https://doi.org/10.1002/jrsm.1553

Article  Google Scholar 

van de Schoot R, de Bruin J, Schram R et al (2021) An open source machine learning framework for efficient and transparent systematic reviews. Nat Mach Intell 3:125–133. https://doi.org/10.1038/s42256-020-00287-7

Article  Google Scholar 

Ferdinands G (2021) AI-assisted systematic reviewing: selecting studies to compare Bayesian versus frequentist SEM for small sample sizes. Multivar Behav Res 56(153):154. https://doi.org/10.1080/00273171.2020.1853501

Article  Google Scholar 

Norambuena GA, Wyles CC, Van Demark RE 3rd, Trousdale RT (2019) Effect of dislocation timing following primary total hip arthroplasty on the risk of redislocation and revision. Hip Int 29(5):489–495

Article  Google Scholar 

Blanco JF, da Casa C, Fidalgo H, García-Iglesias MA, González-Garcia L, Burón-Alvarez I, Sañudo S, García-Alonso M. (2022) Effect of hip hemiarthroplasty dislocation on mortality after hip fracture surgery. Rev Esp Cir Ortop Traumatol. 13:S1888–4415(22)00229–6.https://doi.org/10.1016/j.recot.2022.08.006

Ishii Y, Noguchi H, Takeda M, Sato J, Domae Y (2012) Efficacy of an abduction brace in preventing initial dislocation in the early postoperative period after primary total hip arthroplasty. Surg Sci. 5–10. 4236/ ss. 2012. 33026

Smith TO, Jepson P, Beswick A, Sands G, Drummond A, Davis ET, Sackley CM (2016) Assistive devices, hip precautions, environmental modifications and training to prevent dislocation and improve function after hip arthroplasty. Cochrane Database Syst Rev. 10. 1002/ 14651 858. CD010 815. pub2

Valcarenghi J, Martinov S, Chahidi E, Jennart H, Bui Quoc E, Dimanche MC, Hupez A, Bhogal H, Hafez K, Callewier A, Bath O, Hernigou J (2022) Hip fractures re-operation compared with death at two year in elderly patients: lowest risk of revision with dual mobility total hip arthroplasty than with bipolar hemiarthroplasty or internal fixation of Garden I and II. Int Orthop 46(9):1945–1953. https://doi.org/10.1007/s00264-022-05479-x

Article  Google Scholar 

Hartzler MA, Abdel MP, Sculco PK, Taunton MJ, Pagnano MW, Hanssen AD (2018) Otto Aufranc Award: dual-mobility constructs in revision THA reduced dislocation, rerevision, and reoperation compared with large femoral heads. Clin Orthop Relat Res 476(2):293–301

Article  Google Scholar 

Esposito CI, Carroll KM, Sculco PK, Padgett DE, Jerabek SA, Mayman DJ (2018) Total hip arthroplasty patients with fixed spinopelvic alignment are at higher risk of hip dislocation. J Arthroplasty 33(5):1449–1454

Article  Google Scholar 

Elbuluk AM, Slover J, Anoushiravani AA, Schwarzkopf R, Eftekhary N, Vigdorchik JM (2018) The cost-effectiveness of dual mobility in a spinal deformity population with high risk of dislocation: a computer-based model. Bone Joint J 100-B(10):1297–302

Article  CAS  Google Scholar 

Dhawan R, Baré JV, Shimmin A (2022) Modular dual-mobility articulations in patients with adverse spinopelvic mobility. Bone Joint J 104(7):820–825. https://doi.org/10.1302/0301-620X.104B7.BJJ-2021-1628.R1

Article  Google Scholar 

留言 (0)

沒有登入
gif