Visible Light-Induced Ternary Electron Donor-Acceptor Complex Enabled Synthesis of 2-(2-Hydrazinyl) thiazole Derivatives and The Assessment of Their Antioxidant and Antidiabetic Therapeutic Potential

A mild and eco-friendly visible-light-induced synthesis of 2-(2-Hydrazinyl) thiazole from readily accessible thiosemicarbazide, carbonyl, and phenacyl bromide in the absence of a metal catalyst and/or any extrinsic photosensitizer is reported. This approach only requires a source of visible light and a greener solvent at room temperature to produce the medicinally privileged scaffolds of hydrazinyl-thiazole derivatives in good to outstanding yields. Experimental studies support the in-situ formation of a visible-light-absorbing, photosensitized colored ternary EDA complex. The next step is to make a pair of radicals in an excited state, which makes it easier to make thiazole derivatives through a SET and PCET process. A DFT calculation additionally supported the mechanistic analysis of the course of the reaction. The antioxidant and anti-diabetic properties of some of the compounds in the synthesized library were tested in vitro. All the investigated compounds demonstrated appreciable antioxidant activity, as evidenced by the reducing power experiment and the IC50 values of the DPPH radical scavenging experiment. Furthermore, the IC50 values for 4c, 4d, and 4g also demonstrated a strong α-amylase inhibitory effect.

You have access to this article

Please wait while we load your content... Something went wrong. Try again?

留言 (0)

沒有登入
gif