miR-7-5p Antagomir Protects Against Inflammation-Mediated Apoptosis and Lung Injury via Targeting Raf-1 In Vitro and In Vivo

Luo, Q., J. Zhu, Q. Zhang, J. Xie, C. Yi, and T. Li. 2020. MicroRNA-486-5p promotes acute lung injury via inducing inflammation and apoptosis by targeting OTUD7B. Inflammation 43: 975–984.

Article  CAS  Google Scholar 

Kosutova, P., P. Mikolka, M. Kolomaznik, S. Balentova, M. Adamkov, A. Calkovska, and D. Mokra. 2018. Reduction of lung inflammation, oxidative stress and apoptosis by the PDE4 inhibitor roflumilast in experimental model of acute lung injury. Physiological Research 67: S645–S654.

Article  CAS  Google Scholar 

Khan, A.J., and R. Nanchal. 2007. Cotton dust lung diseases. Current Opinion in Pulmonary Medicine 13: 137–141. https://doi.org/10.1097/MCP.0b013e32802c7ceb.

Article  CAS  Google Scholar 

Brass, D.M., J.W. Hollingsworth, M. Cinque, Z. Li, E. Potts, E. Toloza, W.M. Foster, and D.A. Schwartz. 2008. Chronic LPS inhalation causes emphysema-like changes in mouse lung that are associated with apoptosis. American Journal of Respiratory Cell and Molecular Biology 39: 584–590. https://doi.org/10.1165/rcmb.2007-0448OC.

Article  CAS  Google Scholar 

Shen, W., X. Zhao, and S. Li. 2022. Exosomes derived from ADSCs attenuate sepsis-induced lung injury by delivery of circ-fryl and regulation of the miR-490-3p/SIRT3 Pathway. Inflammation 45: 331–342.

Article  CAS  Google Scholar 

Luo, H., H. Liang, Y. Chen, S. Chen, Y. Xu, L. Xu, J. Liu, K. Zhou, J. Peng, and G. Guo. 2018. miR-7-5p overexpression suppresses cell proliferation and promotes apoptosis through inhibiting the ability of DNA damage repair of PARP-1 and BRCA1 in TK6 cells exposed to hydroquinone. Chemico-Biological Interactions 283: 84–90.

Article  CAS  Google Scholar 

Liu, X., and J. Meng. 2018. Luteolin alleviates LPS-induced bronchopneumonia injury in vitro and in vivo by down-regulating microRNA-132 expression. Biomedicine & Pharmacotherapy 106: 1641–1649.

Article  CAS  Google Scholar 

Pradhan, R., S. Chatterjee, K.C. Hembram, C. Sethy, M. Mandal, and C.N. Kundu. 2021. Nano formulated resveratrol inhibits metastasis and angiogenesis by reducing inflammatory cytokines in oral cancer cells by targeting tumor associated macrophages. Journal of Nutritional Biochemistry 92: 108624.

Livak, K.J., and T.D. Schmittgen. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2- ΔΔCT method. Methods 25: 402–408. https://doi.org/10.1006/meth.2001.1262.

Article  CAS  Google Scholar 

More, G.K., and R.T. Makola. 2020. In-vitro analysis of free radical scavenging activities and suppression of LPS-induced ROS production in macrophage cells by Solanum sisymbriifolium extracts. Scientific Reports 10: 1–9.

Article  Google Scholar 

Zhu, J.H., A.M. Gusdon, H. Cimen, B. Van Houten, E. Koc, and C.T. Chu. 2012. Impaired mitochondrial biogenesis contributes to depletion of functional mitochondria in chronic MPP+ toxicity: Dual roles for ERK1/2. Cell Death & Disease 3: e312–e312. https://doi.org/10.1038/cddis.2012.46.

Article  CAS  Google Scholar 

Plank, M.W., S. Maltby, H.L. Tay, J. Stewart, F. Eyers, P.M. Hansbro, and P.S. Foster. 2015. MicroRNA expression is altered in an ovalbumin-induced asthma model and targeting miR-155 with antagomirs reveals cellular specificity. PLoS ONE 10: e0144810.

Zhang, Y., J. Zhang, Y. Ren, T. Li, J. Bi, Z. Du, and R. Wu. 2021. Luteolin suppresses sepsis-induced cold-inducible RNA-binding protein production and lung injury in neonatal mice. Shock 55: 268–273. https://doi.org/10.1097/SHK.0000000000001624.

Article  CAS  Google Scholar 

Zhang, X., X. Zhang, S. Hu, M. Zheng, J. Zhang, J. Zhao, X. Zhang, B. Yan, L. Jia, and J. Zhao. 2017. Identification of miRNA-7 by genome-wide analysis as a critical sensitizer for TRAIL-induced apoptosis in glioblastoma cells. Nucleic Acids Research 45: 5930–5944. https://doi.org/10.1093/nar/gkx317.

Article  CAS  Google Scholar 

Shi, Y., X. Luo, P. Li, J. Tan, X. Wang, T. Xiang, and G. Ren. 2015. miR-7-5p suppresses cell proliferation and induces apoptosis of breast cancer cells mainly by targeting REGγ. Cancer Letters 35: 827–836. https://doi.org/10.1016/j.canlet.2014.12.014.

Article  CAS  Google Scholar 

Fauconnier, J., D.C. Andersson, S.J. Zhang, J.T. Lanner, R. Wibom, A. Katz, J.D. Bruton, and H. Westerblad. 2007. Effects of palmitate on Ca2+ handling in adult control and ob/ob cardiomyocytes: Impact of mitochondrial reactive oxygen species. Diabetes 56: 1136–1142. https://doi.org/10.2337/db06-0739.

Article  CAS  Google Scholar 

Martins, A.S., V.M. Shkryl, M.C. Nowycky, and N. Shirokova. 2008. Reactive oxygen species contribute to Ca2+ signals produced by osmotic stress in mouse skeletal muscle fibres. The Journal of Physiology 586: 197–210. https://doi.org/10.1113/jphysiol.2007.146571.

Article  CAS  Google Scholar 

Liu, X., X. Zhao, X. Li, S. Lv, R. Ma, Y. Qi, A. Abulikemu, H. Duan, C. Guo, and Y. Li. 2020. PM2. 5. triggered apoptosis in lung epithelial cells through the mitochondrial apoptotic way mediated by a ROS-DRP1-mitochondrial fission axis. Journal of Hazardous Materials 397: 122608.

Leermakers, P.A., A. Schols, A.E.M. Kneppers, M. Kelders, C.C. de Theije, M. Lainscak, and H.R. Gosker. 2018. Molecular signalling towards mitochondrial breakdown is enhanced in skeletal muscle of patients with chronic obstructive pulmonary disease (COPD). Scientific Reports 8: 1–13. https://doi.org/10.1038/s41598-018-33471-2.

Article  CAS  Google Scholar 

Zhong, J., J. Troppmair, and U.R. Rapp. 2001. Independent control of cell survival by Raf-1 and Bcl-2 at the mitochondria. Oncogene 20: 4807–4816. https://doi.org/10.1038/sj.onc.1204614.

Article  CAS  Google Scholar 

Wang, H.G., U.R. Rapp, and J.C. Reed. 1996. Bcl-2 targets the protein kinase Raf-1 to mitochondria. Cell 87: 629–638. https://doi.org/10.1016/s0092-8674(00)81383-5.

Article  CAS  Google Scholar 

Zhang, Z., Q. Nian, G. Chen, S. Cui, Y. Han, and J. Zhang. 2020. Klotho alleviates lung injury caused by paraquat via suppressing ROS/P38 MAPK-regulated inflammatory responses and apoptosis. Oxidative Medicine and Cellular Longevity 2020: 2020.

Google Scholar 

Polikepahad, S., J.M. Knight, A.O. Naghavi, T. Oplt, C.J. Creighton, C. Shaw, A.L. Benham, J. Kim, B. Soibam, R.A. Harris, et al. 2010. Proinflammatory role for let-7 microRNAS in experimental asthma. Journal of Biological Chemistry 285: 30139–30149. https://doi.org/10.1074/jbc.M110.145698.

Article  Google Scholar 

Zhao, J., C. Chen, M. Guo, Y. Tao, P. Cui, Y. Zhou, N. Qin, J. Zheng, J. Zhang, and L. Xu. 2016. MicroRNA-7 deficiency ameliorates the pathologies of acute lung injury through elevating KLF4. Frontiers in Immunology 7: 389. https://doi.org/10.3389/fimmu.2016.00389.

Article  CAS  Google Scholar 

Akbas, F., E. Coskunpinar, E. Aynacı, Y. Müsteri Oltulu, and P. Yildiz. 2012. Analysis of serum micro-RNAs as potential biomarker in chronic obstructive pulmonary disease. Experimental Lung Research 38: 286–294. https://doi.org/10.3109/01902148.2012.689088.

Article  CAS  Google Scholar 

Liu, Z., Y. Liu, L. Li, Z. Xu, B. Bi, Y. Wang, and J.Y. Li. 2014. MiR-7-5p is frequently downregulated in glioblastoma microvasculature and inhibits vascular endothelial cell proliferation by targeting RAF1. Tumor Biology 35: 10177–10184. https://doi.org/10.1007/s13277-014-2318-x.

Article  CAS  Google Scholar 

Kuznetsov, A.V., J. Smigelskaite, C. Doblander, M. Janakiraman, M. Hermann, M. Wurm, S.F. Scheidl, R. Sucher, A. Deutschmann, and J. Troppmair. 2008. Survival signaling by C-RAF: Mitochondrial reactive oxygen species and Ca2+ are critical targets. Molecular and Cellular Biology 28: 2304–2313. https://doi.org/10.1128/MCB.00683-07.

Article  CAS  Google Scholar 

Alavi, A., J.D. Hood, R. Frausto, D.G. Stupack, and D.A. Cheresh. 2003. Role of Raf in vascular protection from distinct apoptotic stimuli. Science 301: 94–96. https://doi.org/10.1126/science.1082015.

Article  CAS  Google Scholar 

Galmiche, A., and J. Fueller. 2007. RAF kinases and mitochondria. Biochimica et Biophysica Acta - Molecular Cell Research 1773: 1256–1262. https://doi.org/10.1016/j.bbamcr.2006.10.012.

Article  CAS  Google Scholar 

Reimann, T., D. Büscher, R.A. Hipskind, S. Krautwald, M.L. Lohmann-Matthes, and M. Baccarini. 1994. Lipopolysaccharide induces activation of the Raf-1/MAP kinase pathway. A putative role for Raf-1 in the induction of the IL-1 beta and the TNF-alpha genes. Journal of Immunology. 153: 5740–5749.

Article  CAS  Google Scholar 

Troppmair, J., and U.R. Rapp. 2003. Raf and the road to cell survival: A tale of bad spells, ring bearers and detours. Biochemical Pharmacology 66: 1341–1345. https://doi.org/10.1016/s0006-2952(03)00483-0.

Article  CAS  Google Scholar 

Yang, G., D. Wu, J. Zhu, O. Jiang, Q. Shi, J. Tian, and Y. Weng. 2013. Upregulation of miR-195 increases the sensitivity of breast cancer cells to adriamycin treatment through inhibition of Raf-1. Oncology Reports 30: 877–889. https://doi.org/10.3892/or.2013.2532.

Article  CAS  Google Scholar 

Gao, D., X. Qi, X. Zhang, K. Fang, Z. Guo, and L. Li. 2019. hsa_circRNA_0006528 as a competing endogenous RNA promotes human breast cancer progression by sponging miR-7-5p and activating the MAPK/ERK signaling pathway. Molecular Carcinogenesis 58: 554–564. https://doi.org/10.1002/mc.22950.

Article  CAS  Google Scholar 

Chen, J., K. Fujii, L. Zhang, T. Roberts, and H. Fu. 2001. Raf-1 promotes cell survival by antagonizing apoptosis signal-regulating kinase 1 through a MEK–ERK independent mechanism. Proceedings of the National Academy of Sciences 98: 7783–7788. https://doi.org/10.1073/pnas.141224398.

Article  CAS  Google Scholar 

Peruzzi, F., M. Prisco, M. Dews, P. Salomoni, E. Grassilli, G. Romano, B. Calabretta, and R. Baserga. 1999. Multiple signaling pathways of the insulin-like growth factor 1 receptor in protection from apoptosis. Molecular and Cellular Biology 19: 7203–7215. https://doi.org/10.1128/mcb.19.10.7203.

Article  CAS  Google Scholar 

Salomoni, P., M.A. Wasik, R.F. Riedel, K. Reiss, J.K. Choi, T. Skorski, and B. Calabretta. 1998. Expression of constitutively active Raf-1 in the mitochondria restores antiapoptotic and leukemogenic potential of a transformation-deficient BCR/ABL mutant. Journal of Experimental Medicine 187: 1995–2007. https://doi.org/10.1084/jem.187.12.1995.

Article  CAS  Google Scholar 

Patel, V.J, S. Biswas Roy, H.J. Mehta, M. Joo, and R.T. Sadikot. 2018. Alternative and natural therapies for acute lung injury and acute respiratory distress syndrome. BioMed Research International 2476824. https://doi.org/10.1155/2018/2476824.

Chen, Y., L. Qu, Y. Li, C. Chen, W. He, L. Shen, and R. Zhang. 2022. Glycyrrhizic acid alleviates lipopolysaccharide (LPS)-induced acute lung injury by regulating angiotensin-converting enzyme-2 (ACE2) and caveolin-1 signaling pathway. Inflammation 45: 253–266. https://doi.org/10.1007/s10753-021-01542-8.

Article  CAS  Google Scholar 

留言 (0)

沒有登入
gif