The role of cancer cell bioenergetics in dormancy and drug resistance

Vallette, F. M., Olivier, C., Lézot, F., Oliver, L., Cochonneau, D., Lalier, L., Cartron, P.-F., & Heymann, D. (2019). Dormant, quiescent, tolerant and persister cells: Four synonyms for the same target in cancer. Biochemical Pharmacology, 162, 169–176. https://doi.org/10.1016/j.bcp.2018.11.004

Article  CAS  Google Scholar 

Aguirre-Ghiso, J. A. (2007). Models, mechanisms and clinical evidence for cancer dormancy. Nature Reviews Cancer, 7(11), 834–846. https://doi.org/10.1038/nrc2256

Article  CAS  Google Scholar 

Sosa, M. S., Bragado, P., & Aguirre-Ghiso, J. A. (2014). Mechanisms of disseminated cancer cell dormancy: an awakening field. Nature Reviews Cancer, 14(9), 611–622. https://doi.org/10.1038/nrc3793

Article  CAS  Google Scholar 

Roesch, A., Vultur, A., Bogeski, I., Wang, H., Zimmermann, K. M., Speicher, D., Körbel, C., Laschke, M. W., Gimotty, P. A., Philipp, S. E., et al. (2013). Overcoming intrinsic multidrug resistance in melanoma by blocking the mitochondrial respiratory chain of slow-cycling JARID1B(high) cells. Cancer Cell, 23(6), 811–825. https://doi.org/10.1016/j.ccr.2013.05.003

Article  CAS  Google Scholar 

Jin, X., Demere, Z., Nair, K., Ali, A., Ferraro, G. B., Natoli, T., Deik, A., Petronio, L., Tang, A. A., Zhu, C., et al. (2020). A metastasis map of human cancer cell lines. Nature, 588(7837), 331–336. https://doi.org/10.1038/s41586-020-2969-2

Article  CAS  Google Scholar 

Ward, P. S., & Thompson, C. B. (2012). Metabolic reprogramming: A cancer hallmark even warburg did not anticipate. Cancer Cell, 21(3), 297–308. https://doi.org/10.1016/j.ccr.2012.02.014

Article  CAS  Google Scholar 

DeBerardinis, R. J., Lum, J. J., Hatzivassiliou, G., & Thompson, C. B. (2008). The biology of cancer: Metabolic reprogramming fuels cell growth and proliferation. Cell Metabolism, 7(1), 11–20. https://doi.org/10.1016/j.cmet.2007.10.002

Article  CAS  Google Scholar 

DeNicola, G. M., & Cantley, L. C. (2015). Cancer’s fuel choice: New flavors for a picky eater. Molecular cell, 60(4), 514–523. https://doi.org/10.1016/j.molcel.2015.10.018

Article  CAS  Google Scholar 

Reinfeld, B. I., Madden, M. Z., Wolf, M. M., Chytil, A., Bader, J. E., Patterson, A. R., Sugiura, A., Cohen, A. S., Ali, A., Do, B. T., et al. (2021). Cell-programmed nutrient partitioning in the tumour microenvironment. Nature, 593(7858), 282–288. https://doi.org/10.1038/s41586-021-03442-1

Article  CAS  Google Scholar 

Lum, J. J., Bauer, D. E., Kong, M., Harris, M. H., Li, C., Lindsten, T., & Thompson, C. B. (2005). Growth factor regulation of autophagy and cell survival in the absence of apoptosis. Cell, 120(2), 237–248. https://doi.org/10.1016/j.cell.2004.11.046

Article  CAS  Google Scholar 

Vander Heiden, M. G., Cantley, L. C., & Thompson, C. B. (2009). Understanding the Warburg effect: The metabolic requirements of cell proliferation. Science, 324(5930), 1029–1033. https://doi.org/10.1126/science.1160809

Article  CAS  Google Scholar 

Endo, H., Okuyama, H., Ohue, M., & Inoue, M. (2014). Dormancy of cancer cells with suppression of AKT activity contributes to survival in chronic hypoxia. PLOS ONE, 9(6), e98858. https://doi.org/10.1371/journal.pone.0098858

Article  CAS  Google Scholar 

Assaily, W., Rubinger, D. A., Wheaton, K., Lin, Y., Ma, W., Xuan, W., Brown-Endres, L., Tsuchihara, K., Mak, T. W., & Benchimol, S. (2011). ROS-mediated p53 induction of Lpin1 regulates fatty acid oxidation in response to nutritional stress. Molecular Cell, 44(3), 491–501. https://doi.org/10.1016/j.molcel.2011.08.038

Article  CAS  Google Scholar 

Zaugg, K., Yao, Y., Reilly, P. T., Kannan, K., Kiarash, R., Mason, J., Huang, P., Sawyer, S. K., Fuerth, B., Faubert, B., et al. (2011). Carnitine palmitoyltransferase 1C promotes cell survival and tumor growth under conditions of metabolic stress. Genes & Development, 25(10), 1041–1051. https://doi.org/10.1101/gad.1987211

Article  CAS  Google Scholar 

Wang, C., Li, Z., Lu, Y., Du, R., Katiyar, S., Yang, J., Fu, M., Leader, J. E., Quong, A., Novikoff, P. M., et al. (2006). Cyclin D1 repression of nuclear respiratory factor 1 integrates nuclear DNA synthesis and mitochondrial function. Proceedings of the National Academy of Sciences, 103(31), 11567–11572. https://doi.org/10.1073/pnas.0603363103

Article  CAS  Google Scholar 

Lopez-Mejia, I. C., Lagarrigue, S., Giralt, A., Martinez-Carreres, L., Zanou, N., Denechaud, P.-D., Castillo-Armengol, J., Chavey, C., Orpinell, M., Delacuisine, B., et al. (2017). CDK4 phosphorylates AMPKα2 to inhibit its activity and repress fatty acid oxidation. Molecular Cell, 68(2), 336–349.e6. https://doi.org/10.1016/j.molcel.2017.09.034

Article  CAS  Google Scholar 

Toyama, E. Q., Herzig, S., Courchet, J., Lewis, T. L., Losón, O. C., Hellberg, K., Young, N. P., Chen, H., Polleux, F., Chan, D. C., et al. (2016). AMP-activated protein kinase mediates mitochondrial fission in response to energy stress. Science, 351(6270), 275–281. https://doi.org/10.1126/science.aab4138

Article  CAS  Google Scholar 

Camarda, R., Zhou, A. Y., Kohnz, R. A., Balakrishnan, S., Mahieu, C., Anderton, B., Eyob, H., Kajimura, S., Tward, A., Krings, G., et al. (2016). Inhibition of fatty acid oxidation as a therapy for MYC-overexpressing triple-negative breast cancer. Nature Medicine, 22(4), 427–432. https://doi.org/10.1038/nm.4055

Article  CAS  Google Scholar 

Madak-Erdogan, Z., Band, S., Zhao, Y. C., Smith, B. P., Kulkoyluoglu-Cotul, E., Zuo, Q., Santaliz Casiano, A., Wrobel, K., Rossi, G., Smith, R. L., et al. (2019). Free fatty acids rewire cancer metabolism in obesity-associated breast cancer via estrogen receptor and mTOR signaling. Cancer Research, canres.2849.2018. https://doi.org/10.1158/0008-5472.CAN-18-2849

Havas, K. M., Milchevskaya, V., Radic, K., Alladin, A., Kafkia, E., Garcia, M., Stolte, J., Klaus, B., Rotmensz, N., Gibson, T. J., et al. (2017). Metabolic shifts in residual breast cancer drive tumor recurrence. Journal of Clinical Investigation, 127(6), 2091–2105. https://doi.org/10.1172/JCI89914

Article  Google Scholar 

Fox, D. B., Garcia, N. M. G., McKinney, B. J., Lupo, R., Noteware, L. C., Newcomb, R., Liu, J., Locasale, J. W., Hirschey, M. D., & Alvarez, J. V. (2020). NRF2 activation promotes the recurrence of dormant tumour cells through regulation of redox and nucleotide metabolism. Nature Metabolism, 2(4), 318–334. https://doi.org/10.1038/s42255-020-0191-z

Article  CAS  Google Scholar 

Shen, S., Faouzi, S., Souquere, S., Roy, S., Routier, E., Libenciuc, C., André, F., Pierron, G., Scoazec, J.-Y., & Robert, C. (2020). Melanoma persister cells are tolerant to BRAF/MEK inhibitors via ACOX1-mediated fatty acid oxidation. Cell Reports, 33(8), 108421. https://doi.org/10.1016/j.celrep.2020.108421

Article  CAS  Google Scholar 

Hampsch, R. A., Wells, J. D., Traphagen, N. A., McCleery, C. F., Fields, J. L., Shee, K., Dillon, L. M., Pooler, D. B., Lewis, L. D., Demidenko, E., et al. (2020). ampk activation by metformin promotes survival of dormant ER + breast cancer cells. Clinical Cancer Research, 26(14), 3707–3719. https://doi.org/10.1158/1078-0432.CCR-20-0269

Article  CAS  Google Scholar 

Luo, Z., Zang, M., & Guo, W. (2010). AMPK as a metabolic tumor suppressor: control of metabolism and cell growth. Future Oncology, 6(3), 457–470. https://doi.org/10.2217/fon.09.174

Article  CAS  Google Scholar 

Li, Y., Liang, R., Sun, M., Li, Z., Sheng, H., Wang, J., Xu, P., Liu, S., Yang, W., Lu, B., et al. (2020). AMPK-dependent phosphorylation of HDAC8 triggers PGM1 expression to promote lung cancer cell survival under glucose starvation. Cancer Letters, 478, 82–92. https://doi.org/10.1016/j.canlet.2020.03.007

Article  CAS  Google Scholar 

Naik, P. P., Mukhopadhyay, S., Praharaj, P. P., Bhol, C. S., Panigrahi, D. P., Mahapatra, K. K., Patra, S., Saha, S., Panda, A. K., Panda, K., et al. (2021). Secretory clusterin promotes oral cancer cell survival via inhibiting apoptosis by activation of autophagy in AMPK/mTOR/ULK1 dependent pathway. Life Sciences, 264, 118722. https://doi.org/10.1016/j.lfs.2020.118722

Article  CAS  Google Scholar 

Ferretti, A. C., Tonucci, F. M., Hidalgo, F., Almada, E., Larocca, M. C., & Favre, C. (2016). AMPK and PKA interaction in the regulation of survival of liver cancer cells subjected to glucose starvation. Oncotarget, 7(14), 17815–17828. https://doi.org/10.18632/oncotarget.7404

Article  Google Scholar 

Chaube, B., Malvi, P., Singh, S. V., Mohammad, N., Viollet, B., & Bhat, M. K. (2015). AMPK maintains energy homeostasis and survival in cancer cells via regulating p38/PGC-1α-mediated mitochondrial biogenesis. Cell Death Discovery, 1(1), 1–11. https://doi.org/10.1038/cddiscovery.2015.63

Article  CAS  Google Scholar 

Peart, T., Valdes, Y. R., Correa, R. J. M., Fazio, E., Bertrand, M., McGee, J., Préfontaine, M., Sugimoto, A., DiMattia, G. E., & Shepherd, T. G. (2015). Intact LKB1 activity is required for survival of dormant ovarian cancer spheroids. Oncotarget, 6(26), 22424–22438.

Article  Google Scholar 

You, B., Xia, T., Gu, M., Zhang, Z., Zhang, Q., Shen, J., Fan, Y., Yao, H., Pan, S., Lu, Y., et al. (2022). AMPK–mTOR–mediated activation of autophagy promotes formation of dormant polyploid giant cancer cells. Cancer Research, 82(5), 846–858. https://doi.org/10.1158/0008-5472.CAN-21-2342

Article  CAS  Google Scholar 

Lu, Z., Luo, R. Z., Lu, Y., Zhang, X., Yu, Q., Khare, S., Kondo, S., Kondo, Y., Yu, Y., Mills, G. B., et al. (2008). The tumor suppressor gene ARHI regulates autophagy and tumor dormancy in human ovarian cancer cells. The Journal of Clinical Investigation, 118(12), 3917–3929. https://doi.org/10.1172/JCI35512

Article  CAS  Google Scholar 

Kim, S. M., Nguyen, T. T., Ravi, A., Kubiniok, P., Finicle, B. T., Jayashankar, V., Malacrida, L., Hou, J., Robertson, J., Gao, D., et al. (2018). PTEN deficiency and AMPK activation promote nutrient scavenging and anabolism in prostate cancer cells. Cancer Discovery, 8(7), 866–883. https://doi.org/10.1158/2159-8290.CD-17-1215

Article  CAS  Google Scholar 

Glatz, J. F. C., & Luiken, J. J. F. P. (2020). Time for a détente in the war on the mechanism of cellular fatty acid uptake. Journal of Lipid Research, 61(9), 1300–1303. https://doi.org/10.1194/jlr.6192020LTE

Article  CAS  Google Scholar 

Ladanyi, A., Mukherjee, A., Kenny, H. A., Johnson, A., Mitra, A. K., Sundaresan, S., Nieman, K. M., Pascual, G., Benitah, S. A., Montag, A., et al. (2018). Adipocyte-induced CD36 expression drives ovarian cancer progression and metastasis. Oncogene, 37(17), 2285–2301. https://doi.org/10.1038/s41388-017-0093-z

Article  CAS  Google Scholar 

Zhao, J., Zhi, Z., Wang, C., Xing, H., Song, G., Yu, X., Zhu, Y., Wang, X., Zhang, X., & Di, Y. (2017). Exogenous lipids promote the growth of breast cancer cells via CD36. Oncology Reports, 38(4), 2105–2115. https://doi.org/10.3892/or.2017.5864

Article  CAS  Google Scholar 

Drury, J., Rychahou, P. G., He, D., Jafari, N., Wang, C., Lee, E. Y., Weiss, H. L., Evers, B. M., & Zaytseva, Y. Y. (2020). Inhibition of fatty acid synthase upregulates expression of cd36 to sustain proliferation of colorectal cancer cells. Frontiers in Oncology, 10 Retrieved from https://www.frontiersin.org/article/10.3389/fonc.2020.01185

Farge, T., Saland, E., de Toni, F., Aroua, N., Hosseini, M., Perry, R., Bosc, C., Sugita, M., Stuani, L., Fraisse, M., et al. (2017). Chemotherapy-resistant human acute myeloid leukemia cells are not enriched for leukemic stem cells but require oxidative metabolism. Cancer Discovery, 7(7), 716–735. https://doi.org/10.1158/2159-8290.CD-16-0441

Article  CAS  Google Scholar 

Pascual, G., Avgustinova, A., Mejetta, S., Martín, M., Castellanos, A., Attolini, C. S.-O., Berenguer, A., Prats, N., Toll, A., Hueto, J. A., et al. (2017). Targeting metastasis-initiating cells through the fatty acid receptor CD36. Nature, 541(7635), 41–45. https://doi.org/10.1038/nature20791

Article  CAS  Google Scholar 

Landberg, N., von Palffy, S., Askmyr, M., Lilljebjörn, H., Sandén, C., Rissler, M., Mustjoki, S., Hjorth-Hansen, H., Richter, J., Ågerstam, H., et al. (2018). CD36 defines primitive chronic myeloid leukemia cells less responsive to imatinib but vulnerable to antibody-based therapeutic targeting. Haematologica, 103(3), 447–455. https://doi.org/10.3324/haematol.2017.169946

留言 (0)

沒有登入
gif