Strength gains after 12 weeks of resistance training correlate with neurochemical markers of brain health in older adults: a randomized control 1H-MRS study

Keller K, Engelhardt M. Strength and muscle mass loss with aging process. Age and strength loss. Muscles Ligaments Tendons J. 2013;3:346–50. https://doi.org/10.11138/mltj/2013.3.4.346.

Article  Google Scholar 

Damoiseaux JS. Effects of aging on functional and structural brain connectivity. Neuroimage. 2017;160:32–40. https://doi.org/10.1016/J.NEUROIMAGE.2017.01.077.

Article  Google Scholar 

Yankner BA, Lu T, Loerch P. The aging brain. Annu Rev Pathol Mech Dis. 2008;3:41–66. https://doi.org/10.1146/ANNUREV.PATHMECHDIS.2.010506.092044.

Article  CAS  Google Scholar 

Bektas A, Schurman SH, Sen R, Ferrucci L. Aging, inflammation and the environment. Exp Gerontol. 2018;105:10–8. https://doi.org/10.1016/J.EXGER.2017.12.015.

Article  CAS  Google Scholar 

Grachev ID, Vania AA. Aging alters regional multichemical profile of the human brain: an in vivo1H-MRS study of young versus middle-aged subjects. J Neurochem. 2001;76:582–93. https://doi.org/10.1046/J.1471-4159.2001.00026.X.

Article  CAS  Google Scholar 

Cruz-Jentoft AJ, Baeyens JP, Bauer JM, Boirie Y, Cederholm T, Landi F, et al. Sarcopenia: European consensus on definition and diagnosis. Age Ageing. 2010;39:412–23. https://doi.org/10.1093/ageing/afq034.

Article  Google Scholar 

Weerasekera A, Levin O, Clauwaert A, Heise K-F, Hermans L, Peeters R, et al. Neurometabolic correlates of reactive and proactive motor inhibition in young and older adults: evidence from multiple regional 1H-MR spectroscopy. Cereb Cortex Commun. 2020;1:1–16. https://doi.org/10.1093/TEXCOM/TGAA028.

Article  Google Scholar 

Levin O, Weerasekera A, King BR, Heise KF, Sima DM, Chalavi S, et al. Sensorimotor cortex neurometabolite levels as correlate of motor performance in normal aging: evidence from a 1H-MRS study. Neuroimage. 2019;202:116050. https://doi.org/10.1016/J.NEUROIMAGE.2019.116050.

Article  CAS  Google Scholar 

Frontera WR, Rodriguez Zayas A, Rodriguez N. Aging of human muscle: understanding sarcopenia at the single muscle cell level. Phys Med Rehabil Clin N Am. 2012;23:201–7. https://doi.org/10.1016/J.PMR.2011.11.012.

Article  Google Scholar 

Smith C, Woessner MN, Sim M, Levinger I. Sarcopenia definition: does it really matter? Implications for resistance training. Ageing Res Rev. 2022;78:101617. https://doi.org/10.1016/J.ARR.2022.101617.

Article  Google Scholar 

Blinkouskaya Y, Weickenmeier J. Brain shape changes associated with cerebral atrophy in healthy aging and Alzheimer’s disease. Front Mech Eng. 2021;7:1–17. https://doi.org/10.3389/fmech.2021.705653.

Article  Google Scholar 

Sala-Llonch R, Bartrés-Faz D, Junqué C. Reorganization of brain networks in aging: a review of functional connectivity studies. Front Psychol. 2015;6:1–11. https://doi.org/10.3389/fpsyg.2015.00663.

Article  Google Scholar 

Raz N, Lindenberger U, Rodrigue KM, Kennedy KM, Head D, Williamson A, et al. Regional brain changes in aging healthy adults: general trends, individual differences and modifiers. Cereb Cortex. 2005;15:1676–89. https://doi.org/10.1093/CERCOR/BHI044.

Article  Google Scholar 

Hsu YH, Liang CK, Chou MY, Wang YC, Liao MC, Chang WC, et al. Sarcopenia is independently associated with parietal atrophy in older adults. Exp Gerontol. 2021;151:111402. https://doi.org/10.1016/J.EXGER.2021.111402.

Article  Google Scholar 

Yu JH, Kim REY, Jung JM, Park SY, Lee DY, Cho HJ, et al. Sarcopenia is associated with decreased gray matter volume in the parietal lobe: a longitudinal cohort study. BMC Geriatr. 2021;21:1–10. https://doi.org/10.1186/S12877-021-02581-4/TABLES/3.

Article  CAS  Google Scholar 

Nikolich-Žugich J, Goldman DP, Cohen PR, Cortese D, Fontana L, Kennedy BK, et al. Preparing for an aging world: engaging biogerontologists, geriatricians, and the society. J Gerontol - Ser A Biol Sci Med Sci. 2016;71:435–44. https://doi.org/10.1093/gerona/glv164.

Article  Google Scholar 

Cabral DF, Rice J, Morris TP, Rundek T, Pascual-Leone A, Gomes-Osman J. Exercise for brain health: an investigation into the underlying mechanisms guided by dose 2019. https://doi.org/10.1007/s13311-019-00749-w.

Erickson KI, Voss MW, Prakash RS, Basak C, Szabo A, Chaddock L, et al. Exercise training increases size of hippocampus and improves memory. Proc Natl Acad Sci U S A. 2011;108:3017–22. https://doi.org/10.1073/PNAS.1015950108/-/DCSUPPLEMENTAL.

Article  CAS  Google Scholar 

Pinho RA, Aguiar AS, Radák Z. Effects of resistance exercise on cerebral redox regulation and cognition: an interplay between muscle and brain. Antioxidants. 2019;8:529. https://doi.org/10.3390/ANTIOX8110529.

Article  CAS  Google Scholar 

Chen W-L, Peng T-C, Sun Y-S, Yang H-F, Liaw F-Y, Wu L-W, et al. Examining the association between quadriceps strength and cognitive performance in the elderly. Med (Baltimore). 2015;94(32):e13335. https://doi.org/10.1097/MD.0000000000001335.

Article  Google Scholar 

Herold F, Törpel A, Schega L, Müller NG. Functional and/or structural brain changes in response to resistance exercises and resistance training lead to cognitive improvements - a systematic review. Eur Rev Aging Phys Act 2019;16(1). https://doi.org/10.1186/s11556-019-0217-2.

Mavros Y, Gates N, Wilson GC, Jain N, Meiklejohn J, Brodaty H, et al. Mediation of cognitive function improvements by strength gains after resistance training in older adults with mild cognitive impairment: outcomes of the study of mental and resistance training. J Am Geriatr Soc. 2017;65:550–9. https://doi.org/10.1111/JGS.14542.

Article  Google Scholar 

Colcombe SJ, Erickson KI, Scalf PE, Kim JS, Prakash R, McAuley E, et al. Aerobic exercise training increases brain volume in aging humans. J Gerontol Ser A. 2006;61:1166–70. https://doi.org/10.1093/GERONA/61.11.1166.

Article  Google Scholar 

Haeger A, Costa AS, Schulz JB, Reetz K. Cerebral changes improved by physical activity during cognitive decline: a systematic review on MRI studies. NeuroImage Clin. 2019;23:101933. https://doi.org/10.1016/J.NICL.2019.101933.

Article  Google Scholar 

Erickson KI, Weinstein AM, Sutton BP, Prakash RS, Voss MW, Chaddock L, et al. Beyond vascularization: aerobic fitness is associated with N-acetylaspartate and working memory. Brain Behav. 2012;2:32–41. https://doi.org/10.1002/brb3.30.

Article  Google Scholar 

Gonzales MM, Tarumi T, Kaur S, Nualnim N, Fallow BA, Pyron M, et al. Aerobic fitness and the brain: increased N-acetyl-aspartate and choline concentrations in endurance-trained middle-aged adults. Brain Topogr. 2013;26:126–34. https://doi.org/10.1007/s10548-012-0248-8.

Article  Google Scholar 

Hendrikse J, Chye Y, Thompson S, Rogasch NC, Suo C, Coxon JP, et al. Regular aerobic exercise is positively associated with hippocampal structure and function in young and middle-aged adults. Hippocampus. 2022;32:137–52. https://doi.org/10.1002/HIPO.23397.

Article  CAS  Google Scholar 

Duarte JMN, Lei H, Mlynárik V, Gruetter R. The neurochemical profile quantified by in vivo 1H NMR spectroscopy. Neuroimage. 2012;61:342–62. https://doi.org/10.1016/j.neuroimage.2011.12.038.

Article  CAS  Google Scholar 

Haga KK, Khor YP, Farrall A, Wardlaw JM. A systematic review of brain metabolite changes, measured with 1H magnetic resonance spectroscopy, in healthy aging. Neurobiol Aging. 2009;30:353–63. https://doi.org/10.1016/j.neurobiolaging.2007.07.005.

Article  CAS  Google Scholar 

Duarte JMN, Schuck PF, Wenk GL, Ferreira GC. Metabolic disturbances in diseases with neurological involvement. Aging Dis. 2014;5:238–55. https://doi.org/10.14336/AD.2014.0500238.

Article  Google Scholar 

Ramadan S, Lin A, Stanwell P. Glutamate and glutamine: a review of in vivo MRS in the human brain. NMR Biomed. 2013;26:1630–46. https://doi.org/10.1002/NBM.3045.

Article  CAS  Google Scholar 

Huang Z, Henry Hap Davis IV, Yue Q, Wiebking C, Duncan NW, Zhang J, et al. Increase in glutamate/glutamine concentration in the medial prefrontal cortex during mental imagery: a combined functional mrs and fMRI study. Hum Brain Mapp. 2015;36:3204–12. https://doi.org/10.1002/HBM.22841.

Article  Google Scholar 

Thielen JW, Hong D, Rohani Rankouhi S, Wiltfang J, Fernández G, Norris DG, et al. The increase in medial prefrontal glutamate/glutamine concentration during memory encoding is associated with better memory performance and stronger functional connectivity in the human medial prefrontal–thalamus–hippocampus network. Hum Brain Mapp. 2018;39:2381–90. https://doi.org/10.1002/HBM.24008.

Article  Google Scholar 

Ding XQ, Maudsley AA, Sabati M, Sheriff S, Schmitz B, Schütze M, et al. Physiological neuronal decline in healthy aging human brain — An in vivo study with MRI and short echo-time whole-brain 1H MR spectroscopic imaging. Neuroimage. 2016;137:45–51. https://doi.org/10.1016/J.NEUROIMAGE.2016.05.014.

Article  Google Scholar 

Huang D, Liu D, Yin J, Qian T, Shrestha S, Ni H. Glutamate-glutamine and GABA in brain of normal aged and patients with cognitive impairment. Eur Radiol. 2017;27:2698–705. https://doi.org/10.1007/s00330-016-4669-8.

Article  Google Scholar 

Maddock RJ, Casazza GA, Buonocore MH, Tanase C. Vigorous exercise increases brain lactate and Glx (glutamate + glutamine): a dynamic 1H-MRS study. Neuroimage. 2011;57:1324–30. https://doi.org/10.1016/J.NEUROIMAGE.2011.05.048.

Article  CAS  Google Scholar 

Valkenborghs SR, Hillman CH, Nilsson M, Smith JJ, AngusLeahy A, et al. Effect of high-intensity interval training on hippocampal metabolism in older adolescents. Psychophysiol. 2022;59(11):00–14090. https://doi.org/10.1111/PSYP.14090.

Article  Google Scholar 

Maddock RJ, Casazza GA, Fernandez DH, Maddock MI. Acute modulation of cortical glutamate and GABA content by physical activity. J Neurosci. 2016;36:2449–57. https://doi.org/10.1523/JNEUROSCI.3455-15.2016.

Article  CAS  Google Scholar 

Kantarci K, Lowe V, Przybelski SA, Senjem ML, Weigand SD, Ivnik RJ, et al. Magnetic resonance spectroscopy, β-amyloid load, and cognition in a population-based sample of cognitively normal older adults. Neurol. 2011;77:951–8. https://doi.org/10.1212/WNL.0B013E31822DC7E1.

Article  CAS  Google Scholar 

Bitsch A, Bruhn H, Vougioukas V, Stringaris A, Lassmann H, Frahm J, et al. Inflammatory CNS demyelination: histopathologic correlation with in vivo quantitative proton MR spectroscopy. AJNR Am J Neuroradiol. 1999;20:1619–27.

CAS  Google Scholar 

Lind A, Boraxbekk CJ, Petersen ET, Paulson OB, Andersen O, Siebner HR, et al. Do glia provide the link between low-grade systemic inflammation and normal cognitive ageing? A 1H magnetic resonance spectroscopy study at 7 tesla. J Neurochem. 2021;159:185–96. https://doi.org/10.1111/JNC.15456.

Article  CAS  Google Scholar 

Vints WAJ, Kušleikienė S, Sheoran S, Šarkinaitė M, Valatkevičienė K, Gleiznienė R, et al. Inflammatory blood biomarker kynurenine is linked with elevated neuroinflammation and neurodegeneration in older adults: evidence from two 1H-MRS post-processing analysis methods. Front Psychiatry 2022. https://doi.org/10.3389/FPSYT.2022.859772.

Popadic Gacesa J, Schick F, Machann J, Grujic N. Intramyocellular lipids and their dynamics assessed by 1H magnetic resonance spectroscopy. Clin Physiol Funct Imaging. 2017;37:558–66. https://doi.org/10.1111/CPF.12346.

Article  CAS  Google Scholar 

Gleeson M, Bishop NC, Stensel DJ, Lindley MR, Mastana SS, Nimmo MA. The anti-inflammatory effects of exercise: mechanisms and implications for the prevention and treatment of disease. Nat Rev Immunol. 2011;11:607–15. https://doi.org/10.1038/nri3041.

Article  CAS  Google Scholar 

Carson N, Leach L, Murphy KJ. A re-examination of Montreal Cognitive Assessment (MoCA) cutoff scores. Int J Geriatr Psychiatry. 2018;33:379–88. https://doi.org/10.1002/gps.4756.

Article 

留言 (0)

沒有登入
gif