Comparison of Near-Infrared Imaging Agents Targeting the PTPmu Tumor Biomarker

Sim HW, Morgan ER, Mason WP (2018) Contemporary management of high-grade gliomas. CNS Oncol 7:51–65

Article  CAS  Google Scholar 

Stupp R, Mason WP, van den Bent MJ et al (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352:987–996

Article  CAS  Google Scholar 

Youngblood MW, Stupp R, Sonabend AM (2021) Role of Resection in glioblastoma management. Neurosurg Clin N Am 32:9–22

Article  Google Scholar 

Gorlia T, van den Bent MJ, Hegi ME et al (2008) Nomograms for predicting survival of patients with newly diagnosed glioblastoma: prognostic factor analysis of EORTC and NCIC trial 26981–22981/CE.3. Lancet Oncol 9:29–38

Article  Google Scholar 

Gittleman H, Cioffi G, Chunduru P et al (2019) An independently validated nomogram for isocitrate dehydrogenase-wild-type glioblastoma patient survival. Neuro-Oncol Adv 1:vdz007

Patil N, Somasundaram E, Waite KA et al (2021) Independently validated sex-specific nomograms for predicting survival in patients with newly diagnosed glioblastoma: NRG Oncology RTOG 0525 and 0825. J Neurooncol 155:363–372

Article  CAS  Google Scholar 

Craig SEL, Wright J, Sloan AE, Brady-Kalnay SM (2016) Fluorescent-guided surgical resection of glioma with targeted molecular imaging agents: a literature review. World Neurosurg 90:154–163

Article  Google Scholar 

Palmieri G, Cofano F, Salvati LF et al (2021) Fluorescence-guided surgery for high-grade gliomas: state of the art and new perspectives. Technol Cancer Res Treat 20:15330338211021605

Article  Google Scholar 

Fang J, Nakamura H, Maeda H (2011) The EPR effect: unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Adv Drug Deliv Rev 63:136–151

Article  CAS  Google Scholar 

Jiang JX, Keating JJ, Jesus EM et al (2015) Optimization of the enhanced permeability and retention effect for near-infrared imaging of solid tumors with indocyanine green. Am J Nuclear Med Mol Imaging 5:390–400

Google Scholar 

Stewart HL, Birch DJS (2021) Fluorescence guided surgery. Methods Appl Fluoresc 9(4):042002

Article  CAS  Google Scholar 

Kaneko S, Kaneko S (2016) Fluorescence-guided resection of malignant glioma with 5-ALA. Int J Biomed Imaging 2016:6135293

Article  Google Scholar 

Eatz TA, Eichberg DG, Lu VM, Di L, Komotar RJ, Ivan ME (2022) Intraoperative 5-ALA fluorescence-guided resection of high-grade glioma leads to greater extent of resection with better outcomes: a systematic review. J Neurooncol 156:233–256

Article  CAS  Google Scholar 

Landsman ML, Kwant G, Mook GA, Zijlstra WG (1976) Light-absorbing properties, stability, and spectral stabilization of indocyanine green. J Appl Physiol 40:575–583

Article  CAS  Google Scholar 

Benson RC, Kues HA (1978) Fluorescence properties of indocyanine green as related to angiography. Phys Med Biol 23:159–163

Article  CAS  Google Scholar 

Jacques SL (2013) Optical properties of biological tissues: a review. Phys Med Biol 58:R37-61

Article  Google Scholar 

Hong G, Antaris AL, Dai H (2017) Near-infrared fluorophores for biomedical imaging. Nat Biomed Eng 1:0010

Article  CAS  Google Scholar 

Zhang DY, Singhal S, Lee JYK (2019) Optical principles of fluorescence-guided brain tumor surgery: a practical primer for the neurosurgeon. Neurosurgery 85:312–324

Article  Google Scholar 

Debie P, Hernot S (2019) Emerging fluorescent molecular tracers to guide intra-operative surgical decision-making. Front Pharmacol 10:510

Article  CAS  Google Scholar 

Tanyi JL, Randall LM, Chambers SK et al (2023) A phase III study of pafolacianine injection (OTL38) for intraoperative imaging of folate receptor–positive ovarian cancer (Study 006). Journal of Clinical Oncology: official journal of the American Society of Clinical Oncology 41:276–284. https://doi.org/10.1200/JCO.22.00291

Article  Google Scholar 

Lui NS, Singhal S (2022) Intraoperative molecular imaging of lung cancer: a review. Surg Oncol Clin N Am 31:685–693

Article  Google Scholar 

Van Keulen S, Hom M, White H, Rosenthal EL, Baik FM (2022) The evolution of fluorescence-guided surgery. Mol Imaging Biol. https://doi.org/10.1007/s11307-022-01772-8

Article  Google Scholar 

Burden-Gulley SM, Gates TJ, Burgoyne AM et al (2010) A novel molecular diagnostic of glioblastomas: detection of an extracellular fragment of protein tyrosine phosphatase mu. Neoplasia (New York, NY) 12:305–316

Article  CAS  Google Scholar 

Burgoyne AM, Phillips-Mason PJ, Burden-Gulley SM et al (2009) Proteolytic cleavage of protein tyrosine phosphatase mu regulates glioblastoma cell migration. Can Res 69:6960–6968

Article  CAS  Google Scholar 

Burgoyne AM, Palomo JM, Phillips-Mason PJ et al (2009) PTPmu suppresses glioma cell migration and dispersal. Neuro Oncol 11:767–778

Article  CAS  Google Scholar 

Phillips-Mason PJ, Craig SE, Brady-Kalnay SM (2014) A protease storm cleaves a cell-cell adhesion molecule in cancer: multiple proteases converge to regulate PTPmu in glioma cells. J Cell Biochem 115:1609–1623

Article  CAS  Google Scholar 

Vincent J, Craig SEL, Johansen ML et al (2021) Detection of tumor-specific PTPmu in gynecological cancer and patient derived xenografts. Diagnostics (Basel, Switzerland) 11(2):181

CAS  Google Scholar 

Johansen ML, Gao Y, Hutnick MA et al (2017) Quantitative molecular imaging with a single Gd-based contrast agent reveals specific tumor binding and retention in vivo. Anal Chem 89:5932–5939

Article  CAS  Google Scholar 

Johansen ML, Perera R, Abenojar E et al (2021) Ultrasound-based molecular imaging of tumors with PTPmu biomarker-targeted nanobubble contrast agents. Int J Mol Sci 22(4):1983

Covarrubias G, Johansen ML, Vincent J et al (2020) PTPmu-targeted nanoparticles label invasive pediatric and adult glioblastoma. Nanomed Nanotechnol Biol Med 28:102216

Article  CAS  Google Scholar 

Herrmann K, Johansen ML, Craig SE et al (2015) Molecular imaging of tumors using a quantitative T 1 mapping technique via magnetic resonance imaging. Diagnostics (Basel, Switzerland) 5:318–332

CAS  Google Scholar 

Burden-Gulley SM, Qutaish MQ, Sullivant KE et al (2011) Novel cryo-imaging of the glioma tumor microenvironment reveals migration and dispersal pathways in vivid three-dimensional detail. Can Res 71:5932–5940

Article  CAS  Google Scholar 

Qutaish MQ, Sullivant KE, Burden-Gulley SM et al (2012) Cryo-image analysis of tumor cell migration, invasion, and dispersal in a mouse xenograft model of human glioblastoma multiforme. Mol Imag Biol 14:572–583

Article  Google Scholar 

Burden-Gulley SM, Qutaish MQ, Sullivant KE et al (2013) Single cell molecular recognition of migrating and invading tumor cells using a targeted fluorescent probe to receptor PTPmu. Int J Cancer 132:1624–1632

Article  CAS  Google Scholar 

Srinivasarao M, Galliford CV, Low PS (2015) Principles in the design of ligand-targeted cancer therapeutics and imaging agents. Nat Rev Drug Discovery 14:203–219

Article  CAS  Google Scholar 

Usama SM, Thapaliya ER, Luciano MP, Schnermann MJ (2021) Not so innocent: impact of fluorophore chemistry on the in vivo properties of bioconjugates. Curr Opin Chem Biol 63:38–45

Article  CAS  Google Scholar 

Evers TH, van Dongen EM, Faesen AC, Meijer EW, Merkx M (2006) Quantitative understanding of the energy transfer between fluorescent proteins connected via flexible peptide linkers. Biochemistry 45:13183–13192

Article  CAS  Google Scholar 

Reinhart MB, Huntington CR, Blair LJ, Heniford BT, Augenstein VA (2016) Indocyanine green: historical context, current applications, and future considerations. Surg Innov 23:166–175

Article  Google Scholar 

Renault K, Fredy JW, Renard PY, Sabot C (2018) Covalent modification of biomolecules through maleimide-based labeling strategies. Bioconjug Chem 29:2497–2513

Article  CAS  Google Scholar 

Fontaine SD, Reid R, Robinson L, Ashley GW, Santi DV (2015) Long-term stabilization of maleimide-thiol conjugates. Bioconjug Chem 26:145–152

Article  CAS  Google Scholar 

Desmettre T, Devoisselle JM, Mordon S (2000) Fluorescence properties and metabolic features of indocyanine green (ICG) as related to angiography. Surv Ophthalmol 45:15–27

Article  CAS  Google Scholar 

Heintz R, Svensson CK, Stoeckel K, Powers GJ, Lalka D (1986) Indocyanine green: pharmacokinetics in the rabbit and relevant studies of its stability and purity. J Pharm Sci 75:398–402

Article  CAS  Google Scholar 

DSouza AV, Lin H, Henderson ER, Samkoe KS, Pogue BW (2016) Review of fluorescence guided surgery systems: identification of key performance capabilities beyond indocyanine green imaging. J Biomed Opt 21:80901

Article  Google Scholar 

Garcia M, Edmiston C, York T et al (2018) Bio-inspired imager improves sensitivity in near-infrared fluorescence image-guided surgery. Optica 5:413–422

Article  CAS  Google Scholar 

Teng CW, Huang V, Arguelles GR et al (2021) Applications of indocyanine green in brain tumor surgery: review of clinical evidence and emerging technologies. Neurosurg Focus 50:E4

Article  Google Scholar 

Starosolski Z, Bhavane R, Ghaghada KB, Vasudevan SA, Kaay A, Annapragada A (2017) Indocyanine green fluorescence in second near-infrared (NIR-II) window. PLoS ONE 12:e0187563

Article  Google Scholar 

Nair AB, Jacob S (2016) A simple practice guide for dose conversion between animals and human. J Basic Clin Pharm 7:27–31

Article  Google Scholar 

Huang R, Vider J, Kovar JL et al (2012) Integrin αvβ3-targeted IRDye 800CW near-infrared imaging of glioblastoma. Clin Cancer Res 18:5731–5740

Article  CAS  Google Scholar 

Gong H, Kovar JL, Cheung L, Rosenthal EL, Olive DM (2014) A comparative study of affibody, panitumumab, and EGF fo

留言 (0)

沒有登入
gif